A new fluorescent sensor mitoferrofluor indicates the presence of chelatable iron in polarized and depolarized mitochondria

Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2022-09, Vol.298 (9), p.102336, Article 102336
Hauptverfasser: Kholmukhamedov, Andaleb, Li, Li, Lindsey, Christopher C., Hu, Jiangting, Nieminen, Anna-Liisa, Takemoto, Kenji, Beeson, Gyda C., Beneker, Chad M., McInnes, Campbell, Beeson, Craig C., Lemasters, John J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 102336
container_title The Journal of biological chemistry
container_volume 298
creator Kholmukhamedov, Andaleb
Li, Li
Lindsey, Christopher C.
Hu, Jiangting
Nieminen, Anna-Liisa
Takemoto, Kenji
Beeson, Gyda C.
Beneker, Chad M.
McInnes, Campbell
Beeson, Craig C.
Lemasters, John J.
description Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.
doi_str_mv 10.1016/j.jbc.2022.102336
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925822007785</els_id><sourcerecordid>35931111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-9c7c5bb635fae2d1491ee8d0aadbb5064b6c96134c4db32c62c8083e722ddbd43</originalsourceid><addsrcrecordid>eNp9UdtKAzEUDKLYWv0AXyQ_sDWX3W0XQSjFGxR8UfAt5HLWpmyTkmwr6s-btVr1xfMSDmdmwswgdErJkBJani-GC6WHjDCWdsZ5uYf6lIx5xgv6tI_6hDCaVawY99BRjAuSJq_oIerxouI0TR-9T7CDF1w3ax8ganAtjuCiD3hpW19DCP7zhq0zVssWIm7ngFcJDE4D9jXWc2hkK1UD2AbvEhKvfCODfQODpTPYwM_eqeq5dyZYeYwOatlEOPl6B-jx-uphepvN7m_uppNZpvOCtlmlR7pQquRFLYEZmiwAjA2R0ihVkDJXpa5KynOdG8WZLpkepxBgxJgxyuR8gC63uqu1WoLpTAbZiFWwSxlehZdW_L04OxfPfiOqvCQFpUmAbgV08DEGqHdcSkTXhFiI1ITomhDbJhLn7PenO8Z39AlwsQVAsr6xEETUtsvU2AC6Fcbbf-Q_APDtnkE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A new fluorescent sensor mitoferrofluor indicates the presence of chelatable iron in polarized and depolarized mitochondria</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kholmukhamedov, Andaleb ; Li, Li ; Lindsey, Christopher C. ; Hu, Jiangting ; Nieminen, Anna-Liisa ; Takemoto, Kenji ; Beeson, Gyda C. ; Beneker, Chad M. ; McInnes, Campbell ; Beeson, Craig C. ; Lemasters, John J.</creator><creatorcontrib>Kholmukhamedov, Andaleb ; Li, Li ; Lindsey, Christopher C. ; Hu, Jiangting ; Nieminen, Anna-Liisa ; Takemoto, Kenji ; Beeson, Gyda C. ; Beneker, Chad M. ; McInnes, Campbell ; Beeson, Craig C. ; Lemasters, John J.</creatorcontrib><description>Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2022.102336</identifier><identifier>PMID: 35931111</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium - metabolism ; Cations, Divalent - analysis ; Cells, Cultured ; Fluorescence ; Fluorescent Dyes - chemistry ; Iron Chelating Agents - analysis ; iron sensor ; ischemia/reperfusion ; membrane potential ; Mice ; mitochondria ; Mitochondria - chemistry ; Mitochondrial Proteins - chemistry ; Oxyquinoline - chemistry ; Rhodamine 123 ; Thapsigargin - pharmacology</subject><ispartof>The Journal of biological chemistry, 2022-09, Vol.298 (9), p.102336, Article 102336</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-9c7c5bb635fae2d1491ee8d0aadbb5064b6c96134c4db32c62c8083e722ddbd43</citedby><cites>FETCH-LOGICAL-c451t-9c7c5bb635fae2d1491ee8d0aadbb5064b6c96134c4db32c62c8083e722ddbd43</cites><orcidid>0000-0003-2119-2411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460511/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9460511/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35931111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kholmukhamedov, Andaleb</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Lindsey, Christopher C.</creatorcontrib><creatorcontrib>Hu, Jiangting</creatorcontrib><creatorcontrib>Nieminen, Anna-Liisa</creatorcontrib><creatorcontrib>Takemoto, Kenji</creatorcontrib><creatorcontrib>Beeson, Gyda C.</creatorcontrib><creatorcontrib>Beneker, Chad M.</creatorcontrib><creatorcontrib>McInnes, Campbell</creatorcontrib><creatorcontrib>Beeson, Craig C.</creatorcontrib><creatorcontrib>Lemasters, John J.</creatorcontrib><title>A new fluorescent sensor mitoferrofluor indicates the presence of chelatable iron in polarized and depolarized mitochondria</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Cations, Divalent - analysis</subject><subject>Cells, Cultured</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Iron Chelating Agents - analysis</subject><subject>iron sensor</subject><subject>ischemia/reperfusion</subject><subject>membrane potential</subject><subject>Mice</subject><subject>mitochondria</subject><subject>Mitochondria - chemistry</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Oxyquinoline - chemistry</subject><subject>Rhodamine 123</subject><subject>Thapsigargin - pharmacology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UdtKAzEUDKLYWv0AXyQ_sDWX3W0XQSjFGxR8UfAt5HLWpmyTkmwr6s-btVr1xfMSDmdmwswgdErJkBJani-GC6WHjDCWdsZ5uYf6lIx5xgv6tI_6hDCaVawY99BRjAuSJq_oIerxouI0TR-9T7CDF1w3ax8ganAtjuCiD3hpW19DCP7zhq0zVssWIm7ngFcJDE4D9jXWc2hkK1UD2AbvEhKvfCODfQODpTPYwM_eqeq5dyZYeYwOatlEOPl6B-jx-uphepvN7m_uppNZpvOCtlmlR7pQquRFLYEZmiwAjA2R0ihVkDJXpa5KynOdG8WZLpkepxBgxJgxyuR8gC63uqu1WoLpTAbZiFWwSxlehZdW_L04OxfPfiOqvCQFpUmAbgV08DEGqHdcSkTXhFiI1ITomhDbJhLn7PenO8Z39AlwsQVAsr6xEETUtsvU2AC6Fcbbf-Q_APDtnkE</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Kholmukhamedov, Andaleb</creator><creator>Li, Li</creator><creator>Lindsey, Christopher C.</creator><creator>Hu, Jiangting</creator><creator>Nieminen, Anna-Liisa</creator><creator>Takemoto, Kenji</creator><creator>Beeson, Gyda C.</creator><creator>Beneker, Chad M.</creator><creator>McInnes, Campbell</creator><creator>Beeson, Craig C.</creator><creator>Lemasters, John J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2119-2411</orcidid></search><sort><creationdate>20220901</creationdate><title>A new fluorescent sensor mitoferrofluor indicates the presence of chelatable iron in polarized and depolarized mitochondria</title><author>Kholmukhamedov, Andaleb ; Li, Li ; Lindsey, Christopher C. ; Hu, Jiangting ; Nieminen, Anna-Liisa ; Takemoto, Kenji ; Beeson, Gyda C. ; Beneker, Chad M. ; McInnes, Campbell ; Beeson, Craig C. ; Lemasters, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-9c7c5bb635fae2d1491ee8d0aadbb5064b6c96134c4db32c62c8083e722ddbd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Cations, Divalent - analysis</topic><topic>Cells, Cultured</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Iron Chelating Agents - analysis</topic><topic>iron sensor</topic><topic>ischemia/reperfusion</topic><topic>membrane potential</topic><topic>Mice</topic><topic>mitochondria</topic><topic>Mitochondria - chemistry</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Oxyquinoline - chemistry</topic><topic>Rhodamine 123</topic><topic>Thapsigargin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kholmukhamedov, Andaleb</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Lindsey, Christopher C.</creatorcontrib><creatorcontrib>Hu, Jiangting</creatorcontrib><creatorcontrib>Nieminen, Anna-Liisa</creatorcontrib><creatorcontrib>Takemoto, Kenji</creatorcontrib><creatorcontrib>Beeson, Gyda C.</creatorcontrib><creatorcontrib>Beneker, Chad M.</creatorcontrib><creatorcontrib>McInnes, Campbell</creatorcontrib><creatorcontrib>Beeson, Craig C.</creatorcontrib><creatorcontrib>Lemasters, John J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kholmukhamedov, Andaleb</au><au>Li, Li</au><au>Lindsey, Christopher C.</au><au>Hu, Jiangting</au><au>Nieminen, Anna-Liisa</au><au>Takemoto, Kenji</au><au>Beeson, Gyda C.</au><au>Beneker, Chad M.</au><au>McInnes, Campbell</au><au>Beeson, Craig C.</au><au>Lemasters, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new fluorescent sensor mitoferrofluor indicates the presence of chelatable iron in polarized and depolarized mitochondria</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>298</volume><issue>9</issue><spage>102336</spage><pages>102336-</pages><artnum>102336</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35931111</pmid><doi>10.1016/j.jbc.2022.102336</doi><orcidid>https://orcid.org/0000-0003-2119-2411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2022-09, Vol.298 (9), p.102336, Article 102336
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460511
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Calcium - metabolism
Cations, Divalent - analysis
Cells, Cultured
Fluorescence
Fluorescent Dyes - chemistry
Iron Chelating Agents - analysis
iron sensor
ischemia/reperfusion
membrane potential
Mice
mitochondria
Mitochondria - chemistry
Mitochondrial Proteins - chemistry
Oxyquinoline - chemistry
Rhodamine 123
Thapsigargin - pharmacology
title A new fluorescent sensor mitoferrofluor indicates the presence of chelatable iron in polarized and depolarized mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20fluorescent%20sensor%20mitoferrofluor%20indicates%20the%20presence%20of%20chelatable%20iron%20in%20polarized%20and%20depolarized%20mitochondria&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kholmukhamedov,%20Andaleb&rft.date=2022-09-01&rft.volume=298&rft.issue=9&rft.spage=102336&rft.pages=102336-&rft.artnum=102336&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2022.102336&rft_dat=%3Cpubmed_cross%3E35931111%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35931111&rft_els_id=S0021925822007785&rfr_iscdi=true