Microstructure and Properties of a Graphene Reinforced Cu–Cr–Mg Composite
To improve the graphene/copper interfacial bonding and the strength of the copper matrix, Cu–Cr–Mg alloy powder and graphene nanosheets (GNPs) have been used as raw materials in the preparation of a layered graphene/Cu–Cr–Mg composite through high-energy ball-milling and fast hot-pressing sintering....
Gespeichert in:
Veröffentlicht in: | Materials 2022-09, Vol.15 (17), p.6166 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 17 |
container_start_page | 6166 |
container_title | Materials |
container_volume | 15 |
creator | Lu, Ruiyu Liu, Bin Cheng, Huichao Gao, Shenghan Li, Tiejun Li, Jia Fang, Qihong |
description | To improve the graphene/copper interfacial bonding and the strength of the copper matrix, Cu–Cr–Mg alloy powder and graphene nanosheets (GNPs) have been used as raw materials in the preparation of a layered graphene/Cu–Cr–Mg composite through high-energy ball-milling and fast hot-pressing sintering. The microstructure of the composite after sintering, as well as the effect of graphene on the mechanical properties and conductivity of the composite, are also studied. The results show that the tensile strength of the composite material reached a value of 349 MPa, which is 46% higher than that of the copper matrix, and the reinforcement efficiency of graphene is as large as 136. Furthermore, the electrical conductivity of the composite material was 81.6% IACS, which is only 0.90% IACS lower than that of the copper matrix. The Cr and Mg elements are found to diffuse to the interface of the graphene/copper composite during sintering, and finely dispersed chromium carbide particles are found to significantly improve the interfacial bonding strength of the composite. Thus, graphene could effectively improve the mechanical properties of the composite while maintaining a high electrical conductivity. |
doi_str_mv | 10.3390/ma15176166 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9458001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745740410</galeid><sourcerecordid>A745740410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-d86adc5de7074daaa8ce0d2018875f4f27374f567dff36916873ab0f25471f5d3</originalsourceid><addsrcrecordid>eNpdkd1KHTEQx0OpVLHe-AQL3pTC0Xxnc1OQpdqCh4rodYjJ5BjZ3WyT3ULv-g6-YZ-kORzRtglkwsxv_pPMIHRM8CljGp8NlgiiJJHyDTogWssV0Zy__eu-j45KecR1MUZaqt-hfSax0oLLA7ReR5dTmfPi5iVDY0ffXOc0QZ4jlCaFxjaX2U4PMEJzA3EMKTvwTbf8_vXU5XqsN02XhimVOMN7tBdsX-Do2R6iu4vPt92X1dW3y6_d-dXKcUrnlW-l9U54UFhxb61tHWBPMWlbJQIPVDHFg5DKh8CkJrJVzN7jQAVXJAjPDtGnne603A_gHYxztr2Zchxs_mmSjebfyBgfzCb9MJqLFmNSBT48C-T0fYEymyEWB31vR0hLMVQR2opaWFf05D_0MS15rN_bUoRJTjmr1OmO2tgezLZNta6r28MQXRohxOo_V1wojjnBNeHjLmHb_pIhvLyeYLOdrHmdLPsD2TyVcw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711364243</pqid></control><display><type>article</type><title>Microstructure and Properties of a Graphene Reinforced Cu–Cr–Mg Composite</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Ruiyu ; Liu, Bin ; Cheng, Huichao ; Gao, Shenghan ; Li, Tiejun ; Li, Jia ; Fang, Qihong</creator><creatorcontrib>Lu, Ruiyu ; Liu, Bin ; Cheng, Huichao ; Gao, Shenghan ; Li, Tiejun ; Li, Jia ; Fang, Qihong</creatorcontrib><description>To improve the graphene/copper interfacial bonding and the strength of the copper matrix, Cu–Cr–Mg alloy powder and graphene nanosheets (GNPs) have been used as raw materials in the preparation of a layered graphene/Cu–Cr–Mg composite through high-energy ball-milling and fast hot-pressing sintering. The microstructure of the composite after sintering, as well as the effect of graphene on the mechanical properties and conductivity of the composite, are also studied. The results show that the tensile strength of the composite material reached a value of 349 MPa, which is 46% higher than that of the copper matrix, and the reinforcement efficiency of graphene is as large as 136. Furthermore, the electrical conductivity of the composite material was 81.6% IACS, which is only 0.90% IACS lower than that of the copper matrix. The Cr and Mg elements are found to diffuse to the interface of the graphene/copper composite during sintering, and finely dispersed chromium carbide particles are found to significantly improve the interfacial bonding strength of the composite. Thus, graphene could effectively improve the mechanical properties of the composite while maintaining a high electrical conductivity.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15176166</identifier><identifier>PMID: 36079546</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloy powders ; Alloys ; Analysis ; Ball milling ; Bonding strength ; Chromium ; Chromium carbide ; Composite materials ; Conductivity ; Copper ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Graphene ; Graphite ; Interfacial bonding ; Magnesium base alloys ; Mechanical properties ; Microstructure ; Morphology ; Plasma sintering ; Powder metallurgy ; Powders ; Process controls ; Raw materials ; Sintering ; Sintering (powder metallurgy) ; Tensile strength ; Yield stress</subject><ispartof>Materials, 2022-09, Vol.15 (17), p.6166</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-d86adc5de7074daaa8ce0d2018875f4f27374f567dff36916873ab0f25471f5d3</citedby><cites>FETCH-LOGICAL-c422t-d86adc5de7074daaa8ce0d2018875f4f27374f567dff36916873ab0f25471f5d3</cites><orcidid>0000-0003-1341-8302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458001/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458001/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Lu, Ruiyu</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Cheng, Huichao</creatorcontrib><creatorcontrib>Gao, Shenghan</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Fang, Qihong</creatorcontrib><title>Microstructure and Properties of a Graphene Reinforced Cu–Cr–Mg Composite</title><title>Materials</title><description>To improve the graphene/copper interfacial bonding and the strength of the copper matrix, Cu–Cr–Mg alloy powder and graphene nanosheets (GNPs) have been used as raw materials in the preparation of a layered graphene/Cu–Cr–Mg composite through high-energy ball-milling and fast hot-pressing sintering. The microstructure of the composite after sintering, as well as the effect of graphene on the mechanical properties and conductivity of the composite, are also studied. The results show that the tensile strength of the composite material reached a value of 349 MPa, which is 46% higher than that of the copper matrix, and the reinforcement efficiency of graphene is as large as 136. Furthermore, the electrical conductivity of the composite material was 81.6% IACS, which is only 0.90% IACS lower than that of the copper matrix. The Cr and Mg elements are found to diffuse to the interface of the graphene/copper composite during sintering, and finely dispersed chromium carbide particles are found to significantly improve the interfacial bonding strength of the composite. Thus, graphene could effectively improve the mechanical properties of the composite while maintaining a high electrical conductivity.</description><subject>Alloy powders</subject><subject>Alloys</subject><subject>Analysis</subject><subject>Ball milling</subject><subject>Bonding strength</subject><subject>Chromium</subject><subject>Chromium carbide</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Copper</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Interfacial bonding</subject><subject>Magnesium base alloys</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Plasma sintering</subject><subject>Powder metallurgy</subject><subject>Powders</subject><subject>Process controls</subject><subject>Raw materials</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Tensile strength</subject><subject>Yield stress</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd1KHTEQx0OpVLHe-AQL3pTC0Xxnc1OQpdqCh4rodYjJ5BjZ3WyT3ULv-g6-YZ-kORzRtglkwsxv_pPMIHRM8CljGp8NlgiiJJHyDTogWssV0Zy__eu-j45KecR1MUZaqt-hfSax0oLLA7ReR5dTmfPi5iVDY0ffXOc0QZ4jlCaFxjaX2U4PMEJzA3EMKTvwTbf8_vXU5XqsN02XhimVOMN7tBdsX-Do2R6iu4vPt92X1dW3y6_d-dXKcUrnlW-l9U54UFhxb61tHWBPMWlbJQIPVDHFg5DKh8CkJrJVzN7jQAVXJAjPDtGnne603A_gHYxztr2Zchxs_mmSjebfyBgfzCb9MJqLFmNSBT48C-T0fYEymyEWB31vR0hLMVQR2opaWFf05D_0MS15rN_bUoRJTjmr1OmO2tgezLZNta6r28MQXRohxOo_V1wojjnBNeHjLmHb_pIhvLyeYLOdrHmdLPsD2TyVcw</recordid><startdate>20220905</startdate><enddate>20220905</enddate><creator>Lu, Ruiyu</creator><creator>Liu, Bin</creator><creator>Cheng, Huichao</creator><creator>Gao, Shenghan</creator><creator>Li, Tiejun</creator><creator>Li, Jia</creator><creator>Fang, Qihong</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1341-8302</orcidid></search><sort><creationdate>20220905</creationdate><title>Microstructure and Properties of a Graphene Reinforced Cu–Cr–Mg Composite</title><author>Lu, Ruiyu ; Liu, Bin ; Cheng, Huichao ; Gao, Shenghan ; Li, Tiejun ; Li, Jia ; Fang, Qihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-d86adc5de7074daaa8ce0d2018875f4f27374f567dff36916873ab0f25471f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloy powders</topic><topic>Alloys</topic><topic>Analysis</topic><topic>Ball milling</topic><topic>Bonding strength</topic><topic>Chromium</topic><topic>Chromium carbide</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Copper</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Interfacial bonding</topic><topic>Magnesium base alloys</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Plasma sintering</topic><topic>Powder metallurgy</topic><topic>Powders</topic><topic>Process controls</topic><topic>Raw materials</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Tensile strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Ruiyu</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><creatorcontrib>Cheng, Huichao</creatorcontrib><creatorcontrib>Gao, Shenghan</creatorcontrib><creatorcontrib>Li, Tiejun</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><creatorcontrib>Fang, Qihong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Ruiyu</au><au>Liu, Bin</au><au>Cheng, Huichao</au><au>Gao, Shenghan</au><au>Li, Tiejun</au><au>Li, Jia</au><au>Fang, Qihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and Properties of a Graphene Reinforced Cu–Cr–Mg Composite</atitle><jtitle>Materials</jtitle><date>2022-09-05</date><risdate>2022</risdate><volume>15</volume><issue>17</issue><spage>6166</spage><pages>6166-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>To improve the graphene/copper interfacial bonding and the strength of the copper matrix, Cu–Cr–Mg alloy powder and graphene nanosheets (GNPs) have been used as raw materials in the preparation of a layered graphene/Cu–Cr–Mg composite through high-energy ball-milling and fast hot-pressing sintering. The microstructure of the composite after sintering, as well as the effect of graphene on the mechanical properties and conductivity of the composite, are also studied. The results show that the tensile strength of the composite material reached a value of 349 MPa, which is 46% higher than that of the copper matrix, and the reinforcement efficiency of graphene is as large as 136. Furthermore, the electrical conductivity of the composite material was 81.6% IACS, which is only 0.90% IACS lower than that of the copper matrix. The Cr and Mg elements are found to diffuse to the interface of the graphene/copper composite during sintering, and finely dispersed chromium carbide particles are found to significantly improve the interfacial bonding strength of the composite. Thus, graphene could effectively improve the mechanical properties of the composite while maintaining a high electrical conductivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36079546</pmid><doi>10.3390/ma15176166</doi><orcidid>https://orcid.org/0000-0003-1341-8302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-09, Vol.15 (17), p.6166 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9458001 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alloy powders Alloys Analysis Ball milling Bonding strength Chromium Chromium carbide Composite materials Conductivity Copper Electric properties Electrical conductivity Electrical resistivity Graphene Graphite Interfacial bonding Magnesium base alloys Mechanical properties Microstructure Morphology Plasma sintering Powder metallurgy Powders Process controls Raw materials Sintering Sintering (powder metallurgy) Tensile strength Yield stress |
title | Microstructure and Properties of a Graphene Reinforced Cu–Cr–Mg Composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20Properties%20of%20a%20Graphene%20Reinforced%20Cu%E2%80%93Cr%E2%80%93Mg%20Composite&rft.jtitle=Materials&rft.au=Lu,%20Ruiyu&rft.date=2022-09-05&rft.volume=15&rft.issue=17&rft.spage=6166&rft.pages=6166-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15176166&rft_dat=%3Cgale_pubme%3EA745740410%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711364243&rft_id=info:pmid/36079546&rft_galeid=A745740410&rfr_iscdi=true |