Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science

Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical medicine 2022-08, Vol.11 (17), p.4998
Hauptverfasser: Knoedler, Leonard, Baecher, Helena, Kauke-Navarro, Martin, Prantl, Lukas, Machens, Hans-Günther, Scheuermann, Philipp, Palm, Christoph, Baumann, Raphael, Kehrer, Andreas, Panayi, Adriana C., Knoedler, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page 4998
container_title Journal of clinical medicine
container_volume 11
creator Knoedler, Leonard
Baecher, Helena
Kauke-Navarro, Martin
Prantl, Lukas
Machens, Hans-Günther
Scheuermann, Philipp
Palm, Christoph
Baumann, Raphael
Kehrer, Andreas
Panayi, Adriana C.
Knoedler, Samuel
description Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We aimed to overcome these barriers and programmed an automated grading system for FP patients utilizing the House and Brackmann scale (HBS). Methods: Image datasets of 86 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm. Results: The algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the direct form displayed superior accuracy levels when compared to the modular classification form (n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%). Conclusions: Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness. Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s workflow.
doi_str_mv 10.3390/jcm11174998
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9457271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712849981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-20157a15280491922353d72056dfb61f1cbc8c6234bf6a016730974b1e1decff3</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx0NReqI-9R8I9EWQq_mxu8n6IByH2oLS4tnnkE1mrzl2N2eSVQ7_-eZQ5M55mBlmPnyZ4YvQN0p-cF6Ti5XpKaWiqGv5BR0xIsSUcMkPdvoJOo1xRXJIWTAqvqIJr4iQNZNH6PXRv-hgI9b4ATqnmw6wHix-0Gtn8WxMvtcJLL4N2rphiRebmKDHbsA32jjd4T-6i5uck4Mhxcv98WIMSwgbfA-QIp77fj0mCHhhMmzgBB22GYPT93qM_t5cP85_Tu9-3_6az-6mhssqTRmhpdC0ZJIUNa0Z4yW3gpGysm1T0ZaaxkhTMV40baUJrQQntSgaCtSCaVt-jK7edNdj04M1-dCgO7UOrtdho7x2an8zuH9q6Z9VXZSCCZoFzt4Fgn8aISbVu2ig6_QAfowqM0xuLdii3z-hKz-GIb-3pShnBSEiU-dvlAk-xgDtxzGUqK2vasdX_h_V-JPV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711324007</pqid></control><display><type>article</type><title>Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Knoedler, Leonard ; Baecher, Helena ; Kauke-Navarro, Martin ; Prantl, Lukas ; Machens, Hans-Günther ; Scheuermann, Philipp ; Palm, Christoph ; Baumann, Raphael ; Kehrer, Andreas ; Panayi, Adriana C. ; Knoedler, Samuel</creator><creatorcontrib>Knoedler, Leonard ; Baecher, Helena ; Kauke-Navarro, Martin ; Prantl, Lukas ; Machens, Hans-Günther ; Scheuermann, Philipp ; Palm, Christoph ; Baumann, Raphael ; Kehrer, Andreas ; Panayi, Adriana C. ; Knoedler, Samuel</creatorcontrib><description>Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We aimed to overcome these barriers and programmed an automated grading system for FP patients utilizing the House and Brackmann scale (HBS). Methods: Image datasets of 86 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm. Results: The algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the direct form displayed superior accuracy levels when compared to the modular classification form (n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%). Conclusions: Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness. Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s workflow.</description><identifier>ISSN: 2077-0383</identifier><identifier>EISSN: 2077-0383</identifier><identifier>DOI: 10.3390/jcm11174998</identifier><identifier>PMID: 36078928</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Asymmetry ; Automation ; Bell's palsy ; Classification ; Clinical medicine ; Disease ; Localization ; Machine learning ; Mouth ; Neural networks ; Patients ; Physiology ; Social research ; Surgery ; Symmetry</subject><ispartof>Journal of clinical medicine, 2022-08, Vol.11 (17), p.4998</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-20157a15280491922353d72056dfb61f1cbc8c6234bf6a016730974b1e1decff3</citedby><cites>FETCH-LOGICAL-c386t-20157a15280491922353d72056dfb61f1cbc8c6234bf6a016730974b1e1decff3</cites><orcidid>0000-0003-4053-9855 ; 0000-0001-9468-2871 ; 0000-0003-2454-2499 ; 0000-0001-9472-7662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457271/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457271/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Knoedler, Leonard</creatorcontrib><creatorcontrib>Baecher, Helena</creatorcontrib><creatorcontrib>Kauke-Navarro, Martin</creatorcontrib><creatorcontrib>Prantl, Lukas</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Scheuermann, Philipp</creatorcontrib><creatorcontrib>Palm, Christoph</creatorcontrib><creatorcontrib>Baumann, Raphael</creatorcontrib><creatorcontrib>Kehrer, Andreas</creatorcontrib><creatorcontrib>Panayi, Adriana C.</creatorcontrib><creatorcontrib>Knoedler, Samuel</creatorcontrib><title>Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science</title><title>Journal of clinical medicine</title><description>Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We aimed to overcome these barriers and programmed an automated grading system for FP patients utilizing the House and Brackmann scale (HBS). Methods: Image datasets of 86 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm. Results: The algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the direct form displayed superior accuracy levels when compared to the modular classification form (n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%). Conclusions: Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness. Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s workflow.</description><subject>Asymmetry</subject><subject>Automation</subject><subject>Bell's palsy</subject><subject>Classification</subject><subject>Clinical medicine</subject><subject>Disease</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Mouth</subject><subject>Neural networks</subject><subject>Patients</subject><subject>Physiology</subject><subject>Social research</subject><subject>Surgery</subject><subject>Symmetry</subject><issn>2077-0383</issn><issn>2077-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9LHDEQx0NReqI-9R8I9EWQq_mxu8n6IByH2oLS4tnnkE1mrzl2N2eSVQ7_-eZQ5M55mBlmPnyZ4YvQN0p-cF6Ti5XpKaWiqGv5BR0xIsSUcMkPdvoJOo1xRXJIWTAqvqIJr4iQNZNH6PXRv-hgI9b4ATqnmw6wHix-0Gtn8WxMvtcJLL4N2rphiRebmKDHbsA32jjd4T-6i5uck4Mhxcv98WIMSwgbfA-QIp77fj0mCHhhMmzgBB22GYPT93qM_t5cP85_Tu9-3_6az-6mhssqTRmhpdC0ZJIUNa0Z4yW3gpGysm1T0ZaaxkhTMV40baUJrQQntSgaCtSCaVt-jK7edNdj04M1-dCgO7UOrtdho7x2an8zuH9q6Z9VXZSCCZoFzt4Fgn8aISbVu2ig6_QAfowqM0xuLdii3z-hKz-GIb-3pShnBSEiU-dvlAk-xgDtxzGUqK2vasdX_h_V-JPV</recordid><startdate>20220825</startdate><enddate>20220825</enddate><creator>Knoedler, Leonard</creator><creator>Baecher, Helena</creator><creator>Kauke-Navarro, Martin</creator><creator>Prantl, Lukas</creator><creator>Machens, Hans-Günther</creator><creator>Scheuermann, Philipp</creator><creator>Palm, Christoph</creator><creator>Baumann, Raphael</creator><creator>Kehrer, Andreas</creator><creator>Panayi, Adriana C.</creator><creator>Knoedler, Samuel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4053-9855</orcidid><orcidid>https://orcid.org/0000-0001-9468-2871</orcidid><orcidid>https://orcid.org/0000-0003-2454-2499</orcidid><orcidid>https://orcid.org/0000-0001-9472-7662</orcidid></search><sort><creationdate>20220825</creationdate><title>Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science</title><author>Knoedler, Leonard ; Baecher, Helena ; Kauke-Navarro, Martin ; Prantl, Lukas ; Machens, Hans-Günther ; Scheuermann, Philipp ; Palm, Christoph ; Baumann, Raphael ; Kehrer, Andreas ; Panayi, Adriana C. ; Knoedler, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-20157a15280491922353d72056dfb61f1cbc8c6234bf6a016730974b1e1decff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymmetry</topic><topic>Automation</topic><topic>Bell's palsy</topic><topic>Classification</topic><topic>Clinical medicine</topic><topic>Disease</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Mouth</topic><topic>Neural networks</topic><topic>Patients</topic><topic>Physiology</topic><topic>Social research</topic><topic>Surgery</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoedler, Leonard</creatorcontrib><creatorcontrib>Baecher, Helena</creatorcontrib><creatorcontrib>Kauke-Navarro, Martin</creatorcontrib><creatorcontrib>Prantl, Lukas</creatorcontrib><creatorcontrib>Machens, Hans-Günther</creatorcontrib><creatorcontrib>Scheuermann, Philipp</creatorcontrib><creatorcontrib>Palm, Christoph</creatorcontrib><creatorcontrib>Baumann, Raphael</creatorcontrib><creatorcontrib>Kehrer, Andreas</creatorcontrib><creatorcontrib>Panayi, Adriana C.</creatorcontrib><creatorcontrib>Knoedler, Samuel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knoedler, Leonard</au><au>Baecher, Helena</au><au>Kauke-Navarro, Martin</au><au>Prantl, Lukas</au><au>Machens, Hans-Günther</au><au>Scheuermann, Philipp</au><au>Palm, Christoph</au><au>Baumann, Raphael</au><au>Kehrer, Andreas</au><au>Panayi, Adriana C.</au><au>Knoedler, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science</atitle><jtitle>Journal of clinical medicine</jtitle><date>2022-08-25</date><risdate>2022</risdate><volume>11</volume><issue>17</issue><spage>4998</spage><pages>4998-</pages><issn>2077-0383</issn><eissn>2077-0383</eissn><abstract>Background: Reliable, time- and cost-effective, and clinician-friendly diagnostic tools are cornerstones in facial palsy (FP) patient management. Different automated FP grading systems have been developed but revealed persisting downsides such as insufficient accuracy and cost-intensive hardware. We aimed to overcome these barriers and programmed an automated grading system for FP patients utilizing the House and Brackmann scale (HBS). Methods: Image datasets of 86 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2017 and May 2021, were used to train the neural network and evaluate its accuracy. Nine facial poses per patient were analyzed by the algorithm. Results: The algorithm showed an accuracy of 100%. Oversampling did not result in altered outcomes, while the direct form displayed superior accuracy levels when compared to the modular classification form (n = 86; 100% vs. 99%). The Early Fusion technique was linked to improved accuracy outcomes in comparison to the Late Fusion and sequential method (n = 86; 100% vs. 96% vs. 97%). Conclusions: Our automated FP grading system combines high-level accuracy with cost- and time-effectiveness. Our algorithm may accelerate the grading process in FP patients and facilitate the FP surgeon’s workflow.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36078928</pmid><doi>10.3390/jcm11174998</doi><orcidid>https://orcid.org/0000-0003-4053-9855</orcidid><orcidid>https://orcid.org/0000-0001-9468-2871</orcidid><orcidid>https://orcid.org/0000-0003-2454-2499</orcidid><orcidid>https://orcid.org/0000-0001-9472-7662</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0383
ispartof Journal of clinical medicine, 2022-08, Vol.11 (17), p.4998
issn 2077-0383
2077-0383
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9457271
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Asymmetry
Automation
Bell's palsy
Classification
Clinical medicine
Disease
Localization
Machine learning
Mouth
Neural networks
Patients
Physiology
Social research
Surgery
Symmetry
title Towards a Reliable and Rapid Automated Grading System in Facial Palsy Patients: Facial Palsy Surgery Meets Computer Science
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A33%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20Reliable%20and%20Rapid%20Automated%20Grading%20System%20in%20Facial%20Palsy%20Patients:%20Facial%20Palsy%20Surgery%20Meets%20Computer%20Science&rft.jtitle=Journal%20of%20clinical%20medicine&rft.au=Knoedler,%20Leonard&rft.date=2022-08-25&rft.volume=11&rft.issue=17&rft.spage=4998&rft.pages=4998-&rft.issn=2077-0383&rft.eissn=2077-0383&rft_id=info:doi/10.3390/jcm11174998&rft_dat=%3Cproquest_pubme%3E2712849981%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711324007&rft_id=info:pmid/36078928&rfr_iscdi=true