Misclassification bias in estimating clinical severity of SARS-CoV-2 variants – Authors' reply

Citing modelling results that indicated a declining infection detection rate in the USA during the transition period between the dominance of the delta (B.1.617.2) and omicron (B.1.1.529) variants, possibly driven by increasing proportions of undetected infections in people with non-severe disease,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet (British edition) 2022-09, Vol.400 (10355), p.809-810
Hauptverfasser: Nyberg, Tommy, Ferguson, Neil M, Blake, Joshua, Hinsley, Wes, Bhatt, Samir, De Angelis, Daniela, Thelwall, Simon, Presanis, Anne M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 810
container_issue 10355
container_start_page 809
container_title The Lancet (British edition)
container_volume 400
creator Nyberg, Tommy
Ferguson, Neil M
Blake, Joshua
Hinsley, Wes
Bhatt, Samir
De Angelis, Daniela
Thelwall, Simon
Presanis, Anne M
description Citing modelling results that indicated a declining infection detection rate in the USA during the transition period between the dominance of the delta (B.1.617.2) and omicron (B.1.1.529) variants, possibly driven by increasing proportions of undetected infections in people with non-severe disease, Yek and colleagues hypothesise a mechanism for differential detection rates: the omicron cases for which a positive test result was recorded might have included a relatively higher proportion of infected people who were prone to severe disease than the analogous delta cases—for example, because a higher proportion of people infected with the omicron variant who sought testing had comorbidity. [...]available data do not suggest a change in the proportion of infections being detected in England by community PCR testing during the study period (although the extent of community testing was reduced later2). [...]recent studies in other European countries with comorbidity data available reported only minor differences in comorbidity between delta and omicron cases, and provided comorbidity-adjusted relative risks consistent with those from our study.4–6 One of these studies explored the effect of adjusting versus not adjusting for comorbidity and found only marginal differences.5 Taken together, we believe the available data indicate that it is unlikely that the proposed mechanisms have strongly biased the results of our analysis.
doi_str_mv 10.1016/S0140-6736(22)01432-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9456774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140673622014325</els_id><sourcerecordid>2713308549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4105-4de54dc41fb21221d3ea0e38f7b25d7ad145208c2b875a21671c5ba2ea43c9933</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS1URNPCI1BZ6qJlMeDf8cymKIpaQCpCIoDYGY_nTutqYgd7JlJ2fYe-IU-C05QIumHln_vdY597EHpJyWtKaPlmTqggRal4ecrYq3zgrJBP0IQKJQop1Pc9NNkh--ggpRtCiCiJfIb2eUmqqhZqgn58dMn2JiXXOWsGFzxunEnYeQxpcIt85a-w7Z3P5R4nWEF0wxqHDs-nn-fFLHwrGF6Z6IwfEv51e4en43AdYjrBEZb9-jl62pk-wYuH9RB9vTj_MntfXH5692E2vSysoEQWogUp2rzvGkYZoy0HQ4BXnWqYbJVpqZCMVJY1lZKG0VJRKxvDwAhu65rzQ3S21V2OzQJaC36IptfLmD3EtQ7G6X8r3l3rq7DStZClUiILnD4IxPBzzOb1Io8G-t54CGPSTFHOSSVFndHjR-hNGKPP9jYUVUrVckPJLWVjSClCt_sMJXqTob7PUG8C0ozp-wy1zH1HfzvZdf0JLQNvtwDkea4cRJ2sA2-hdRHsoNvg_vPEb12qrJo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711777959</pqid></control><display><type>article</type><title>Misclassification bias in estimating clinical severity of SARS-CoV-2 variants – Authors' reply</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Nyberg, Tommy ; Ferguson, Neil M ; Blake, Joshua ; Hinsley, Wes ; Bhatt, Samir ; De Angelis, Daniela ; Thelwall, Simon ; Presanis, Anne M</creator><creatorcontrib>Nyberg, Tommy ; Ferguson, Neil M ; Blake, Joshua ; Hinsley, Wes ; Bhatt, Samir ; De Angelis, Daniela ; Thelwall, Simon ; Presanis, Anne M</creatorcontrib><description>Citing modelling results that indicated a declining infection detection rate in the USA during the transition period between the dominance of the delta (B.1.617.2) and omicron (B.1.1.529) variants, possibly driven by increasing proportions of undetected infections in people with non-severe disease, Yek and colleagues hypothesise a mechanism for differential detection rates: the omicron cases for which a positive test result was recorded might have included a relatively higher proportion of infected people who were prone to severe disease than the analogous delta cases—for example, because a higher proportion of people infected with the omicron variant who sought testing had comorbidity. [...]available data do not suggest a change in the proportion of infections being detected in England by community PCR testing during the study period (although the extent of community testing was reduced later2). [...]recent studies in other European countries with comorbidity data available reported only minor differences in comorbidity between delta and omicron cases, and provided comorbidity-adjusted relative risks consistent with those from our study.4–6 One of these studies explored the effect of adjusting versus not adjusting for comorbidity and found only marginal differences.5 Taken together, we believe the available data indicate that it is unlikely that the proposed mechanisms have strongly biased the results of our analysis.</description><identifier>ISSN: 0140-6736</identifier><identifier>EISSN: 1474-547X</identifier><identifier>DOI: 10.1016/S0140-6736(22)01432-5</identifier><identifier>PMID: 36088947</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bias ; Comorbidity ; Coronaviruses ; Correspondence ; COVID-19 ; COVID-19 vaccines ; Humans ; Hypotheses ; Infections ; Risk assessment ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases</subject><ispartof>The Lancet (British edition), 2022-09, Vol.400 (10355), p.809-810</ispartof><rights>2022 Elsevier Ltd</rights><rights>2022. Elsevier Ltd</rights><rights>2022 Elsevier Ltd. All rights reserved. 2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4105-4de54dc41fb21221d3ea0e38f7b25d7ad145208c2b875a21671c5ba2ea43c9933</citedby><cites>FETCH-LOGICAL-c4105-4de54dc41fb21221d3ea0e38f7b25d7ad145208c2b875a21671c5ba2ea43c9933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2711777959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36088947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nyberg, Tommy</creatorcontrib><creatorcontrib>Ferguson, Neil M</creatorcontrib><creatorcontrib>Blake, Joshua</creatorcontrib><creatorcontrib>Hinsley, Wes</creatorcontrib><creatorcontrib>Bhatt, Samir</creatorcontrib><creatorcontrib>De Angelis, Daniela</creatorcontrib><creatorcontrib>Thelwall, Simon</creatorcontrib><creatorcontrib>Presanis, Anne M</creatorcontrib><title>Misclassification bias in estimating clinical severity of SARS-CoV-2 variants – Authors' reply</title><title>The Lancet (British edition)</title><addtitle>Lancet</addtitle><description>Citing modelling results that indicated a declining infection detection rate in the USA during the transition period between the dominance of the delta (B.1.617.2) and omicron (B.1.1.529) variants, possibly driven by increasing proportions of undetected infections in people with non-severe disease, Yek and colleagues hypothesise a mechanism for differential detection rates: the omicron cases for which a positive test result was recorded might have included a relatively higher proportion of infected people who were prone to severe disease than the analogous delta cases—for example, because a higher proportion of people infected with the omicron variant who sought testing had comorbidity. [...]available data do not suggest a change in the proportion of infections being detected in England by community PCR testing during the study period (although the extent of community testing was reduced later2). [...]recent studies in other European countries with comorbidity data available reported only minor differences in comorbidity between delta and omicron cases, and provided comorbidity-adjusted relative risks consistent with those from our study.4–6 One of these studies explored the effect of adjusting versus not adjusting for comorbidity and found only marginal differences.5 Taken together, we believe the available data indicate that it is unlikely that the proposed mechanisms have strongly biased the results of our analysis.</description><subject>Bias</subject><subject>Comorbidity</subject><subject>Coronaviruses</subject><subject>Correspondence</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Infections</subject><subject>Risk assessment</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><issn>0140-6736</issn><issn>1474-547X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1uEzEUhS1URNPCI1BZ6qJlMeDf8cymKIpaQCpCIoDYGY_nTutqYgd7JlJ2fYe-IU-C05QIumHln_vdY597EHpJyWtKaPlmTqggRal4ecrYq3zgrJBP0IQKJQop1Pc9NNkh--ggpRtCiCiJfIb2eUmqqhZqgn58dMn2JiXXOWsGFzxunEnYeQxpcIt85a-w7Z3P5R4nWEF0wxqHDs-nn-fFLHwrGF6Z6IwfEv51e4en43AdYjrBEZb9-jl62pk-wYuH9RB9vTj_MntfXH5692E2vSysoEQWogUp2rzvGkYZoy0HQ4BXnWqYbJVpqZCMVJY1lZKG0VJRKxvDwAhu65rzQ3S21V2OzQJaC36IptfLmD3EtQ7G6X8r3l3rq7DStZClUiILnD4IxPBzzOb1Io8G-t54CGPSTFHOSSVFndHjR-hNGKPP9jYUVUrVckPJLWVjSClCt_sMJXqTob7PUG8C0ozp-wy1zH1HfzvZdf0JLQNvtwDkea4cRJ2sA2-hdRHsoNvg_vPEb12qrJo</recordid><startdate>20220910</startdate><enddate>20220910</enddate><creator>Nyberg, Tommy</creator><creator>Ferguson, Neil M</creator><creator>Blake, Joshua</creator><creator>Hinsley, Wes</creator><creator>Bhatt, Samir</creator><creator>De Angelis, Daniela</creator><creator>Thelwall, Simon</creator><creator>Presanis, Anne M</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TT</scope><scope>0TZ</scope><scope>0U~</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88C</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8C2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ASE</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FPQ</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K6X</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>KB~</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220910</creationdate><title>Misclassification bias in estimating clinical severity of SARS-CoV-2 variants – Authors' reply</title><author>Nyberg, Tommy ; Ferguson, Neil M ; Blake, Joshua ; Hinsley, Wes ; Bhatt, Samir ; De Angelis, Daniela ; Thelwall, Simon ; Presanis, Anne M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4105-4de54dc41fb21221d3ea0e38f7b25d7ad145208c2b875a21671c5ba2ea43c9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bias</topic><topic>Comorbidity</topic><topic>Coronaviruses</topic><topic>Correspondence</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Infections</topic><topic>Risk assessment</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyberg, Tommy</creatorcontrib><creatorcontrib>Ferguson, Neil M</creatorcontrib><creatorcontrib>Blake, Joshua</creatorcontrib><creatorcontrib>Hinsley, Wes</creatorcontrib><creatorcontrib>Bhatt, Samir</creatorcontrib><creatorcontrib>De Angelis, Daniela</creatorcontrib><creatorcontrib>Thelwall, Simon</creatorcontrib><creatorcontrib>Presanis, Anne M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>News PRO</collection><collection>Pharma and Biotech Premium PRO</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Lancet Titles</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>British Nursing Index</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>British Nursing Index</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Newsstand Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Lancet (British edition)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyberg, Tommy</au><au>Ferguson, Neil M</au><au>Blake, Joshua</au><au>Hinsley, Wes</au><au>Bhatt, Samir</au><au>De Angelis, Daniela</au><au>Thelwall, Simon</au><au>Presanis, Anne M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Misclassification bias in estimating clinical severity of SARS-CoV-2 variants – Authors' reply</atitle><jtitle>The Lancet (British edition)</jtitle><addtitle>Lancet</addtitle><date>2022-09-10</date><risdate>2022</risdate><volume>400</volume><issue>10355</issue><spage>809</spage><epage>810</epage><pages>809-810</pages><issn>0140-6736</issn><eissn>1474-547X</eissn><abstract>Citing modelling results that indicated a declining infection detection rate in the USA during the transition period between the dominance of the delta (B.1.617.2) and omicron (B.1.1.529) variants, possibly driven by increasing proportions of undetected infections in people with non-severe disease, Yek and colleagues hypothesise a mechanism for differential detection rates: the omicron cases for which a positive test result was recorded might have included a relatively higher proportion of infected people who were prone to severe disease than the analogous delta cases—for example, because a higher proportion of people infected with the omicron variant who sought testing had comorbidity. [...]available data do not suggest a change in the proportion of infections being detected in England by community PCR testing during the study period (although the extent of community testing was reduced later2). [...]recent studies in other European countries with comorbidity data available reported only minor differences in comorbidity between delta and omicron cases, and provided comorbidity-adjusted relative risks consistent with those from our study.4–6 One of these studies explored the effect of adjusting versus not adjusting for comorbidity and found only marginal differences.5 Taken together, we believe the available data indicate that it is unlikely that the proposed mechanisms have strongly biased the results of our analysis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36088947</pmid><doi>10.1016/S0140-6736(22)01432-5</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-6736
ispartof The Lancet (British edition), 2022-09, Vol.400 (10355), p.809-810
issn 0140-6736
1474-547X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9456774
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Bias
Comorbidity
Coronaviruses
Correspondence
COVID-19
COVID-19 vaccines
Humans
Hypotheses
Infections
Risk assessment
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Viral diseases
title Misclassification bias in estimating clinical severity of SARS-CoV-2 variants – Authors' reply
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Misclassification%20bias%20in%20estimating%20clinical%20severity%20of%20SARS-CoV-2%20variants%20%E2%80%93%20Authors'%20reply&rft.jtitle=The%20Lancet%20(British%20edition)&rft.au=Nyberg,%20Tommy&rft.date=2022-09-10&rft.volume=400&rft.issue=10355&rft.spage=809&rft.epage=810&rft.pages=809-810&rft.issn=0140-6736&rft.eissn=1474-547X&rft_id=info:doi/10.1016/S0140-6736(22)01432-5&rft_dat=%3Cproquest_pubme%3E2713308549%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711777959&rft_id=info:pmid/36088947&rft_els_id=S0140673622014325&rfr_iscdi=true