Chiral monoterpenes reveal forest emission mechanisms and drought responses

Monoterpenes (C 10 H 16 ) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year −1 ), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change 1 – 3 . Although m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-09, Vol.609 (7926), p.307-312
Hauptverfasser: Byron, Joseph, Kreuzwieser, Juergen, Purser, Gemma, van Haren, Joost, Ladd, S. Nemiah, Meredith, Laura K., Werner, Christiane, Williams, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 312
container_issue 7926
container_start_page 307
container_title Nature (London)
container_volume 609
creator Byron, Joseph
Kreuzwieser, Juergen
Purser, Gemma
van Haren, Joost
Ladd, S. Nemiah
Meredith, Laura K.
Werner, Christiane
Williams, Jonathan
description Monoterpenes (C 10 H 16 ) are emitted in large quantities by vegetation to the atmosphere (>100 TgC year −1 ), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change 1 – 3 . Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (−) forms are rarely distinguished in measurement or modelling studies 4 – 6 . Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment 7 . Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (−)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (−)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change. Analysis of atmospheric data on two enantiomerically separated forms of monoterpene from a controlled drought and rewetting experiment in an enclosed tropical rainforest ecosystem showed distinct diel emission peaks, regulated by different production pathways.
doi_str_mv 10.1038/s41586-022-05020-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9452298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712893212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-373ab75677ea329c823798d5589e7e976599c58d2c0a12a71b983b9c8b91ae633</originalsourceid><addsrcrecordid>eNp9kUFPGzEQha2qqAmhf6CnlXrhsmCP12v7UglFLSCQuMDZ8u5Oko2ydurZReLf4zSoFRx6sjT-3hs_P8a-CX4huDSXVAll6pIDlFxx4KX6xOai0nVZ1UZ_ZnPOwZTcyHrGTom2nHMldPWFzWTNtRDGzNndctMnvyuGGOKIaY8BqUj4jHm2iglpLHDoifoYigHbjQ89DVT40BVditN6M2aa9jEQ0hk7Wfkd4de3c8Gefv18XN6U9w_Xt8ur-7KtlBhLqaVvtKq1Ri_BtgaktqZTyljUaHWtrG2V6aDlXoDXorFGNplrrPBYS7lgP46--6kZsGsxjDmC26d-8OnFRd-79zeh37h1fHa2UgDZbMHO3wxS_D3ljC5HbHG38wHjRA4On1NJgMOu7x_QbZxSyPEOFBgrQUCm4Ei1KRIlXP19jODu0JU7duVyV-5PV05lkTyKKMNhjemf9X9Ur1DAlgY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712893212</pqid></control><display><type>article</type><title>Chiral monoterpenes reveal forest emission mechanisms and drought responses</title><source>Nature</source><source>SpringerNature Journals</source><creator>Byron, Joseph ; Kreuzwieser, Juergen ; Purser, Gemma ; van Haren, Joost ; Ladd, S. Nemiah ; Meredith, Laura K. ; Werner, Christiane ; Williams, Jonathan</creator><creatorcontrib>Byron, Joseph ; Kreuzwieser, Juergen ; Purser, Gemma ; van Haren, Joost ; Ladd, S. Nemiah ; Meredith, Laura K. ; Werner, Christiane ; Williams, Jonathan</creatorcontrib><description>Monoterpenes (C 10 H 16 ) are emitted in large quantities by vegetation to the atmosphere (&gt;100 TgC year −1 ), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change 1 – 3 . Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (−) forms are rarely distinguished in measurement or modelling studies 4 – 6 . Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment 7 . Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (−)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (−)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change. Analysis of atmospheric data on two enantiomerically separated forms of monoterpene from a controlled drought and rewetting experiment in an enclosed tropical rainforest ecosystem showed distinct diel emission peaks, regulated by different production pathways.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05020-5</identifier><identifier>PMID: 36071188</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/2661/2146 ; 639/638/169/824 ; Atmospheric chemistry ; Biosynthesis ; Chromatography ; Climate change ; Cloud formation ; Drought ; Drying ; Ecological function ; Emission ; Emissions ; Enantiomers ; Forest ecosystems ; Free radicals ; Humanities and Social Sciences ; Hydroxyl radicals ; Isoprene ; Labeling ; Mixing ratio ; Monoterpenes ; multidisciplinary ; Oxidation ; Ozone ; Pools ; Rain ; Rainforests ; Science ; Science (multidisciplinary) ; Terrestrial ecosystems ; Ultraviolet radiation ; Vegetation ; VOCs ; Volatile organic compounds ; α-Pinene</subject><ispartof>Nature (London), 2022-09, Vol.609 (7926), p.307-312</ispartof><rights>The Author(s) 2022</rights><rights>Copyright Nature Publishing Group Sep 8, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-373ab75677ea329c823798d5589e7e976599c58d2c0a12a71b983b9c8b91ae633</citedby><cites>FETCH-LOGICAL-c451t-373ab75677ea329c823798d5589e7e976599c58d2c0a12a71b983b9c8b91ae633</cites><orcidid>0000-0001-7062-6840 ; 0000-0003-4244-4366 ; 0000-0002-5251-9723 ; 0000-0001-7879-5972 ; 0000-0001-9421-1703 ; 0000-0002-0132-5785 ; 0000-0002-7676-9057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05020-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05020-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Byron, Joseph</creatorcontrib><creatorcontrib>Kreuzwieser, Juergen</creatorcontrib><creatorcontrib>Purser, Gemma</creatorcontrib><creatorcontrib>van Haren, Joost</creatorcontrib><creatorcontrib>Ladd, S. Nemiah</creatorcontrib><creatorcontrib>Meredith, Laura K.</creatorcontrib><creatorcontrib>Werner, Christiane</creatorcontrib><creatorcontrib>Williams, Jonathan</creatorcontrib><title>Chiral monoterpenes reveal forest emission mechanisms and drought responses</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Monoterpenes (C 10 H 16 ) are emitted in large quantities by vegetation to the atmosphere (&gt;100 TgC year −1 ), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change 1 – 3 . Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (−) forms are rarely distinguished in measurement or modelling studies 4 – 6 . Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment 7 . Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (−)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (−)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change. Analysis of atmospheric data on two enantiomerically separated forms of monoterpene from a controlled drought and rewetting experiment in an enclosed tropical rainforest ecosystem showed distinct diel emission peaks, regulated by different production pathways.</description><subject>631/449/2661/2146</subject><subject>639/638/169/824</subject><subject>Atmospheric chemistry</subject><subject>Biosynthesis</subject><subject>Chromatography</subject><subject>Climate change</subject><subject>Cloud formation</subject><subject>Drought</subject><subject>Drying</subject><subject>Ecological function</subject><subject>Emission</subject><subject>Emissions</subject><subject>Enantiomers</subject><subject>Forest ecosystems</subject><subject>Free radicals</subject><subject>Humanities and Social Sciences</subject><subject>Hydroxyl radicals</subject><subject>Isoprene</subject><subject>Labeling</subject><subject>Mixing ratio</subject><subject>Monoterpenes</subject><subject>multidisciplinary</subject><subject>Oxidation</subject><subject>Ozone</subject><subject>Pools</subject><subject>Rain</subject><subject>Rainforests</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Terrestrial ecosystems</subject><subject>Ultraviolet radiation</subject><subject>Vegetation</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>α-Pinene</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUFPGzEQha2qqAmhf6CnlXrhsmCP12v7UglFLSCQuMDZ8u5Oko2ydurZReLf4zSoFRx6sjT-3hs_P8a-CX4huDSXVAll6pIDlFxx4KX6xOai0nVZ1UZ_ZnPOwZTcyHrGTom2nHMldPWFzWTNtRDGzNndctMnvyuGGOKIaY8BqUj4jHm2iglpLHDoifoYigHbjQ89DVT40BVditN6M2aa9jEQ0hk7Wfkd4de3c8Gefv18XN6U9w_Xt8ur-7KtlBhLqaVvtKq1Ri_BtgaktqZTyljUaHWtrG2V6aDlXoDXorFGNplrrPBYS7lgP46--6kZsGsxjDmC26d-8OnFRd-79zeh37h1fHa2UgDZbMHO3wxS_D3ljC5HbHG38wHjRA4On1NJgMOu7x_QbZxSyPEOFBgrQUCm4Ei1KRIlXP19jODu0JU7duVyV-5PV05lkTyKKMNhjemf9X9Ur1DAlgY</recordid><startdate>20220908</startdate><enddate>20220908</enddate><creator>Byron, Joseph</creator><creator>Kreuzwieser, Juergen</creator><creator>Purser, Gemma</creator><creator>van Haren, Joost</creator><creator>Ladd, S. Nemiah</creator><creator>Meredith, Laura K.</creator><creator>Werner, Christiane</creator><creator>Williams, Jonathan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7062-6840</orcidid><orcidid>https://orcid.org/0000-0003-4244-4366</orcidid><orcidid>https://orcid.org/0000-0002-5251-9723</orcidid><orcidid>https://orcid.org/0000-0001-7879-5972</orcidid><orcidid>https://orcid.org/0000-0001-9421-1703</orcidid><orcidid>https://orcid.org/0000-0002-0132-5785</orcidid><orcidid>https://orcid.org/0000-0002-7676-9057</orcidid></search><sort><creationdate>20220908</creationdate><title>Chiral monoterpenes reveal forest emission mechanisms and drought responses</title><author>Byron, Joseph ; Kreuzwieser, Juergen ; Purser, Gemma ; van Haren, Joost ; Ladd, S. Nemiah ; Meredith, Laura K. ; Werner, Christiane ; Williams, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-373ab75677ea329c823798d5589e7e976599c58d2c0a12a71b983b9c8b91ae633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/449/2661/2146</topic><topic>639/638/169/824</topic><topic>Atmospheric chemistry</topic><topic>Biosynthesis</topic><topic>Chromatography</topic><topic>Climate change</topic><topic>Cloud formation</topic><topic>Drought</topic><topic>Drying</topic><topic>Ecological function</topic><topic>Emission</topic><topic>Emissions</topic><topic>Enantiomers</topic><topic>Forest ecosystems</topic><topic>Free radicals</topic><topic>Humanities and Social Sciences</topic><topic>Hydroxyl radicals</topic><topic>Isoprene</topic><topic>Labeling</topic><topic>Mixing ratio</topic><topic>Monoterpenes</topic><topic>multidisciplinary</topic><topic>Oxidation</topic><topic>Ozone</topic><topic>Pools</topic><topic>Rain</topic><topic>Rainforests</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Terrestrial ecosystems</topic><topic>Ultraviolet radiation</topic><topic>Vegetation</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>α-Pinene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byron, Joseph</creatorcontrib><creatorcontrib>Kreuzwieser, Juergen</creatorcontrib><creatorcontrib>Purser, Gemma</creatorcontrib><creatorcontrib>van Haren, Joost</creatorcontrib><creatorcontrib>Ladd, S. Nemiah</creatorcontrib><creatorcontrib>Meredith, Laura K.</creatorcontrib><creatorcontrib>Werner, Christiane</creatorcontrib><creatorcontrib>Williams, Jonathan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byron, Joseph</au><au>Kreuzwieser, Juergen</au><au>Purser, Gemma</au><au>van Haren, Joost</au><au>Ladd, S. Nemiah</au><au>Meredith, Laura K.</au><au>Werner, Christiane</au><au>Williams, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chiral monoterpenes reveal forest emission mechanisms and drought responses</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-09-08</date><risdate>2022</risdate><volume>609</volume><issue>7926</issue><spage>307</spage><epage>312</epage><pages>307-312</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Monoterpenes (C 10 H 16 ) are emitted in large quantities by vegetation to the atmosphere (&gt;100 TgC year −1 ), where they readily react with hydroxyl radicals and ozone to form new particles and, hence, clouds, affecting the Earth’s radiative budget and, thereby, climate change 1 – 3 . Although most monoterpenes exist in two chiral mirror-image forms termed enantiomers, these (+) and (−) forms are rarely distinguished in measurement or modelling studies 4 – 6 . Therefore, the individual formation pathways of monoterpene enantiomers in plants and their ecological functions are poorly understood. Here we present enantiomerically separated atmospheric monoterpene and isoprene data from an enclosed tropical rainforest ecosystem in the absence of ultraviolet light and atmospheric oxidation chemistry, during a four-month controlled drought and rewetting experiment 7 . Surprisingly, the emitted enantiomers showed distinct diel emission peaks, which responded differently to progressive drying. Isotopic labelling established that vegetation emitted mainly de novo-synthesized (−)-α-pinene, whereas (+)-α-pinene was emitted from storage pools. As drought progressed, the source of (−)-α-pinene emissions shifted to storage pools, favouring cloud formation. Pre-drought mixing ratios of both α-pinene enantiomers correlated better with other monoterpenes than with each other, indicating different enzymatic controls. These results show that enantiomeric distribution is key to understanding the underlying processes driving monoterpene emissions from forest ecosystems and predicting atmospheric feedbacks in response to climate change. Analysis of atmospheric data on two enantiomerically separated forms of monoterpene from a controlled drought and rewetting experiment in an enclosed tropical rainforest ecosystem showed distinct diel emission peaks, regulated by different production pathways.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36071188</pmid><doi>10.1038/s41586-022-05020-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7062-6840</orcidid><orcidid>https://orcid.org/0000-0003-4244-4366</orcidid><orcidid>https://orcid.org/0000-0002-5251-9723</orcidid><orcidid>https://orcid.org/0000-0001-7879-5972</orcidid><orcidid>https://orcid.org/0000-0001-9421-1703</orcidid><orcidid>https://orcid.org/0000-0002-0132-5785</orcidid><orcidid>https://orcid.org/0000-0002-7676-9057</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-09, Vol.609 (7926), p.307-312
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9452298
source Nature; SpringerNature Journals
subjects 631/449/2661/2146
639/638/169/824
Atmospheric chemistry
Biosynthesis
Chromatography
Climate change
Cloud formation
Drought
Drying
Ecological function
Emission
Emissions
Enantiomers
Forest ecosystems
Free radicals
Humanities and Social Sciences
Hydroxyl radicals
Isoprene
Labeling
Mixing ratio
Monoterpenes
multidisciplinary
Oxidation
Ozone
Pools
Rain
Rainforests
Science
Science (multidisciplinary)
Terrestrial ecosystems
Ultraviolet radiation
Vegetation
VOCs
Volatile organic compounds
α-Pinene
title Chiral monoterpenes reveal forest emission mechanisms and drought responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chiral%20monoterpenes%20reveal%20forest%20emission%20mechanisms%20and%20drought%20responses&rft.jtitle=Nature%20(London)&rft.au=Byron,%20Joseph&rft.date=2022-09-08&rft.volume=609&rft.issue=7926&rft.spage=307&rft.epage=312&rft.pages=307-312&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05020-5&rft_dat=%3Cproquest_pubme%3E2712893212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712893212&rft_id=info:pmid/36071188&rfr_iscdi=true