Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model

The use of an automatic histopathological image identification system is essential for expediting diagnoses and lowering mistake rates. Although it is of enormous clinical importance, computerized breast cancer multiclassification using histological pictures has rarely been investigated. A deep lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-08, Vol.2022, p.1-11
Hauptverfasser: Alqahtani, Yahya, Mandawkar, Umakant, Sharma, Aditi, Hasan, Mohammad Najmus Saquib, Kulkarni, Mrunalini Harish, Sugumar, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Computational intelligence and neuroscience
container_volume 2022
creator Alqahtani, Yahya
Mandawkar, Umakant
Sharma, Aditi
Hasan, Mohammad Najmus Saquib
Kulkarni, Mrunalini Harish
Sugumar, R.
description The use of an automatic histopathological image identification system is essential for expediting diagnoses and lowering mistake rates. Although it is of enormous clinical importance, computerized breast cancer multiclassification using histological pictures has rarely been investigated. A deep learning-based classification strategy is suggested to solve the challenge of automated categorization of breast cancer pathology pictures. The attention model that acts on the feature channel is the channel refinement model. The learned channel weight may be used to reduce superfluous features when implementing the feature channel. To increase classification accuracy, calibration is necessary. To increase the accuracy of channel recalibration findings, a multiscale channel recalibration model is provided, and the msSE-ResNet convolutional neural network is built. The multiscale properties flow through the network’s highest pooling layer. The channel weights obtained at different scales are delivered into line fusion and used as input to the next channel recalibration model, which may improve the results of channel recalibration. The experimental findings reveal that the spatial recalibration model fares poorly on the job of classifying breast cancer pathology pictures when applied to the semantic segmentation of brain MRI images. The public BreakHis dataset is used to conduct the experiment. The network performs benign/malignant breast pathology picture classification collected at various magnifications with a classification accuracy of 88.87 percent, according to experimental data. The diseased images are also more resilient. Experiments on pathological pictures at various magnifications show that msSE-ResNet34 is capable of performing well when used to classify pathological images at various magnifications.
doi_str_mv 10.1155/2022/7075408
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9444358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A716959362</galeid><sourcerecordid>A716959362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-d687a7855010b2cc27f9db3af0edad099fef24cb0fee99567947b0debf9069e73</originalsourceid><addsrcrecordid>eNp9kV9PFDEUxRujEQTf_ACT-GKCC22nf6YvJrBBIEEkAR98ajrt7W5JdwrtjEQ_vd3sBoMPPN2b21_OvacHoQ8EHxLC-RHFlB5JLDnD3Su0S0QnZ5zK9vVTL_gOelfKHcZcckzfop1WYFkRsot-nmQwZWzmZrCQm2szLlNMi2BNbC5WZgHNPJpSgq-TMaShOTEFXFObcQnNtymOoVS2YldXzc3DBPCnjpODuI_eeBMLvN_WPfTj6-nt_Hx2-f3sYn58ObOMt-PM1RuN7DjHBPfUWiq9cn1rPAZnHFbKg6fM9tgDKMWFVEz22EHvFRYKZLuHvmx076d-Bc7CMGYT9X0OK5N_62SCfv4yhKVepF9aMcZa3lWBT1uBnKqBMupV9QQxmgHSVDSVhHSMUKIq-vE_9C5Neaj21hQVglMm_lGL-jE6DD7VvXYtqo8lEYqrVtBKfd5QNqdSMvinkwnW62T1Olm9TbbiBxt8GQZnHsPL9F-p86BU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712665246</pqid></control><display><type>article</type><title>Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model</title><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Alqahtani, Yahya ; Mandawkar, Umakant ; Sharma, Aditi ; Hasan, Mohammad Najmus Saquib ; Kulkarni, Mrunalini Harish ; Sugumar, R.</creator><contributor>Kaur, Amandeep ; Amandeep Kaur</contributor><creatorcontrib>Alqahtani, Yahya ; Mandawkar, Umakant ; Sharma, Aditi ; Hasan, Mohammad Najmus Saquib ; Kulkarni, Mrunalini Harish ; Sugumar, R. ; Kaur, Amandeep ; Amandeep Kaur</creatorcontrib><description>The use of an automatic histopathological image identification system is essential for expediting diagnoses and lowering mistake rates. Although it is of enormous clinical importance, computerized breast cancer multiclassification using histological pictures has rarely been investigated. A deep learning-based classification strategy is suggested to solve the challenge of automated categorization of breast cancer pathology pictures. The attention model that acts on the feature channel is the channel refinement model. The learned channel weight may be used to reduce superfluous features when implementing the feature channel. To increase classification accuracy, calibration is necessary. To increase the accuracy of channel recalibration findings, a multiscale channel recalibration model is provided, and the msSE-ResNet convolutional neural network is built. The multiscale properties flow through the network’s highest pooling layer. The channel weights obtained at different scales are delivered into line fusion and used as input to the next channel recalibration model, which may improve the results of channel recalibration. The experimental findings reveal that the spatial recalibration model fares poorly on the job of classifying breast cancer pathology pictures when applied to the semantic segmentation of brain MRI images. The public BreakHis dataset is used to conduct the experiment. The network performs benign/malignant breast pathology picture classification collected at various magnifications with a classification accuracy of 88.87 percent, according to experimental data. The diseased images are also more resilient. Experiments on pathological pictures at various magnifications show that msSE-ResNet34 is capable of performing well when used to classify pathological images at various magnifications.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/7075408</identifier><identifier>PMID: 36072731</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Artificial neural networks ; Breast cancer ; Cancer therapies ; Classification ; Computational linguistics ; Datasets ; Deep learning ; Diagnosis ; Image classification ; Image processing ; Image segmentation ; Immunotherapy ; Language processing ; Lymphatic system ; Machine learning ; Mammography ; Medical imaging ; Natural language interfaces ; Neural networks ; Pathology ; Pictures ; Technology application ; Tumors</subject><ispartof>Computational intelligence and neuroscience, 2022-08, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Yahya Alqahtani et al.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Yahya Alqahtani et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Yahya Alqahtani et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-d687a7855010b2cc27f9db3af0edad099fef24cb0fee99567947b0debf9069e73</citedby><cites>FETCH-LOGICAL-c453t-d687a7855010b2cc27f9db3af0edad099fef24cb0fee99567947b0debf9069e73</cites><orcidid>0000-0002-5206-1046 ; 0000-0001-8622-0722 ; 0000-0001-7639-5094 ; 0000-0003-3014-7612 ; 0000-0002-1002-858X ; 0000-0002-0801-6600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444358/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444358/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><contributor>Kaur, Amandeep</contributor><contributor>Amandeep Kaur</contributor><creatorcontrib>Alqahtani, Yahya</creatorcontrib><creatorcontrib>Mandawkar, Umakant</creatorcontrib><creatorcontrib>Sharma, Aditi</creatorcontrib><creatorcontrib>Hasan, Mohammad Najmus Saquib</creatorcontrib><creatorcontrib>Kulkarni, Mrunalini Harish</creatorcontrib><creatorcontrib>Sugumar, R.</creatorcontrib><title>Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model</title><title>Computational intelligence and neuroscience</title><description>The use of an automatic histopathological image identification system is essential for expediting diagnoses and lowering mistake rates. Although it is of enormous clinical importance, computerized breast cancer multiclassification using histological pictures has rarely been investigated. A deep learning-based classification strategy is suggested to solve the challenge of automated categorization of breast cancer pathology pictures. The attention model that acts on the feature channel is the channel refinement model. The learned channel weight may be used to reduce superfluous features when implementing the feature channel. To increase classification accuracy, calibration is necessary. To increase the accuracy of channel recalibration findings, a multiscale channel recalibration model is provided, and the msSE-ResNet convolutional neural network is built. The multiscale properties flow through the network’s highest pooling layer. The channel weights obtained at different scales are delivered into line fusion and used as input to the next channel recalibration model, which may improve the results of channel recalibration. The experimental findings reveal that the spatial recalibration model fares poorly on the job of classifying breast cancer pathology pictures when applied to the semantic segmentation of brain MRI images. The public BreakHis dataset is used to conduct the experiment. The network performs benign/malignant breast pathology picture classification collected at various magnifications with a classification accuracy of 88.87 percent, according to experimental data. The diseased images are also more resilient. Experiments on pathological pictures at various magnifications show that msSE-ResNet34 is capable of performing well when used to classify pathological images at various magnifications.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Cancer therapies</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Immunotherapy</subject><subject>Language processing</subject><subject>Lymphatic system</subject><subject>Machine learning</subject><subject>Mammography</subject><subject>Medical imaging</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Pathology</subject><subject>Pictures</subject><subject>Technology application</subject><subject>Tumors</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV9PFDEUxRujEQTf_ACT-GKCC22nf6YvJrBBIEEkAR98ajrt7W5JdwrtjEQ_vd3sBoMPPN2b21_OvacHoQ8EHxLC-RHFlB5JLDnD3Su0S0QnZ5zK9vVTL_gOelfKHcZcckzfop1WYFkRsot-nmQwZWzmZrCQm2szLlNMi2BNbC5WZgHNPJpSgq-TMaShOTEFXFObcQnNtymOoVS2YldXzc3DBPCnjpODuI_eeBMLvN_WPfTj6-nt_Hx2-f3sYn58ObOMt-PM1RuN7DjHBPfUWiq9cn1rPAZnHFbKg6fM9tgDKMWFVEz22EHvFRYKZLuHvmx076d-Bc7CMGYT9X0OK5N_62SCfv4yhKVepF9aMcZa3lWBT1uBnKqBMupV9QQxmgHSVDSVhHSMUKIq-vE_9C5Neaj21hQVglMm_lGL-jE6DD7VvXYtqo8lEYqrVtBKfd5QNqdSMvinkwnW62T1Olm9TbbiBxt8GQZnHsPL9F-p86BU</recordid><startdate>20220829</startdate><enddate>20220829</enddate><creator>Alqahtani, Yahya</creator><creator>Mandawkar, Umakant</creator><creator>Sharma, Aditi</creator><creator>Hasan, Mohammad Najmus Saquib</creator><creator>Kulkarni, Mrunalini Harish</creator><creator>Sugumar, R.</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5206-1046</orcidid><orcidid>https://orcid.org/0000-0001-8622-0722</orcidid><orcidid>https://orcid.org/0000-0001-7639-5094</orcidid><orcidid>https://orcid.org/0000-0003-3014-7612</orcidid><orcidid>https://orcid.org/0000-0002-1002-858X</orcidid><orcidid>https://orcid.org/0000-0002-0801-6600</orcidid></search><sort><creationdate>20220829</creationdate><title>Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model</title><author>Alqahtani, Yahya ; Mandawkar, Umakant ; Sharma, Aditi ; Hasan, Mohammad Najmus Saquib ; Kulkarni, Mrunalini Harish ; Sugumar, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-d687a7855010b2cc27f9db3af0edad099fef24cb0fee99567947b0debf9069e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Cancer therapies</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Immunotherapy</topic><topic>Language processing</topic><topic>Lymphatic system</topic><topic>Machine learning</topic><topic>Mammography</topic><topic>Medical imaging</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Pathology</topic><topic>Pictures</topic><topic>Technology application</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alqahtani, Yahya</creatorcontrib><creatorcontrib>Mandawkar, Umakant</creatorcontrib><creatorcontrib>Sharma, Aditi</creatorcontrib><creatorcontrib>Hasan, Mohammad Najmus Saquib</creatorcontrib><creatorcontrib>Kulkarni, Mrunalini Harish</creatorcontrib><creatorcontrib>Sugumar, R.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alqahtani, Yahya</au><au>Mandawkar, Umakant</au><au>Sharma, Aditi</au><au>Hasan, Mohammad Najmus Saquib</au><au>Kulkarni, Mrunalini Harish</au><au>Sugumar, R.</au><au>Kaur, Amandeep</au><au>Amandeep Kaur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2022-08-29</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>The use of an automatic histopathological image identification system is essential for expediting diagnoses and lowering mistake rates. Although it is of enormous clinical importance, computerized breast cancer multiclassification using histological pictures has rarely been investigated. A deep learning-based classification strategy is suggested to solve the challenge of automated categorization of breast cancer pathology pictures. The attention model that acts on the feature channel is the channel refinement model. The learned channel weight may be used to reduce superfluous features when implementing the feature channel. To increase classification accuracy, calibration is necessary. To increase the accuracy of channel recalibration findings, a multiscale channel recalibration model is provided, and the msSE-ResNet convolutional neural network is built. The multiscale properties flow through the network’s highest pooling layer. The channel weights obtained at different scales are delivered into line fusion and used as input to the next channel recalibration model, which may improve the results of channel recalibration. The experimental findings reveal that the spatial recalibration model fares poorly on the job of classifying breast cancer pathology pictures when applied to the semantic segmentation of brain MRI images. The public BreakHis dataset is used to conduct the experiment. The network performs benign/malignant breast pathology picture classification collected at various magnifications with a classification accuracy of 88.87 percent, according to experimental data. The diseased images are also more resilient. Experiments on pathological pictures at various magnifications show that msSE-ResNet34 is capable of performing well when used to classify pathological images at various magnifications.</abstract><cop>New York</cop><pub>Hindawi</pub><pmid>36072731</pmid><doi>10.1155/2022/7075408</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5206-1046</orcidid><orcidid>https://orcid.org/0000-0001-8622-0722</orcidid><orcidid>https://orcid.org/0000-0001-7639-5094</orcidid><orcidid>https://orcid.org/0000-0003-3014-7612</orcidid><orcidid>https://orcid.org/0000-0002-1002-858X</orcidid><orcidid>https://orcid.org/0000-0002-0801-6600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-08, Vol.2022, p.1-11
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9444358
source PubMed Central Open Access; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Breast cancer
Cancer therapies
Classification
Computational linguistics
Datasets
Deep learning
Diagnosis
Image classification
Image processing
Image segmentation
Immunotherapy
Language processing
Lymphatic system
Machine learning
Mammography
Medical imaging
Natural language interfaces
Neural networks
Pathology
Pictures
Technology application
Tumors
title Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breast%20Cancer%20Pathological%20Image%20Classification%20Based%20on%20the%20Multiscale%20CNN%20Squeeze%20Model&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Alqahtani,%20Yahya&rft.date=2022-08-29&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/7075408&rft_dat=%3Cgale_pubme%3EA716959362%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712665246&rft_id=info:pmid/36072731&rft_galeid=A716959362&rfr_iscdi=true