LRLoop: a method to predict feedback loops in cell–cell communication
Abstract Motivation Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating de...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2022-09, Vol.38 (17), p.4117-4126 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4126 |
---|---|
container_issue | 17 |
container_start_page | 4117 |
container_title | Bioinformatics |
container_volume | 38 |
creator | Xin, Ying Lyu, Pin Jiang, Junyao Zhou, Fengquan Wang, Jie Blackshaw, Seth Qian, Jiang |
description | Abstract
Motivation
Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops.
Results
Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification.
Availability and implementation
An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1).
Supplementary information
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btac447 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9438954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac447</oup_id><sourcerecordid>2685036795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</originalsourceid><addsrcrecordid>eNqNkU1OwzAQhS0EolC4QuUlm1An_knMAglVUJAqISFYW45_qCGJQ5wgseMO3JCT4KqlojtWM5K_eX4zD4BJis5TxPG0dN411ne17J0K07KXipB8DxylhKEkQ5Tvxx6zPCEFwiNwHMILQjQlhByCEaZ5UWQMH4H54mHhfXsBJaxNv_Qa9h62ndFO9dAao0upXmEVkQBdA5Wpqu_Pr1WBytf10DgVHfjmBBxYWQVzuqlj8HRz_Ti7TRb387vZ1SJRhLI-SS3JrMKGsFwzbgznhkfnHKdc0ULmUkqiSsaLDNnS8jLTmqpIMpPHJtd4DC7Xuu1Q1kYr0_SdrETbuVp2H8JLJ3ZfGrcUz_5dcIILTkkUONsIdP5tMKEXtQurfWRj_BBExgqK4t04jShbo6rzIXTGbr9JkVilIHZTEJsU4uDkr8nt2O_ZI5CuAT-0_xX9AYvWnk0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685036795</pqid></control><display><type>article</type><title>LRLoop: a method to predict feedback loops in cell–cell communication</title><source>Oxford Journals Open Access Collection</source><creator>Xin, Ying ; Lyu, Pin ; Jiang, Junyao ; Zhou, Fengquan ; Wang, Jie ; Blackshaw, Seth ; Qian, Jiang</creator><creatorcontrib>Xin, Ying ; Lyu, Pin ; Jiang, Junyao ; Zhou, Fengquan ; Wang, Jie ; Blackshaw, Seth ; Qian, Jiang</creatorcontrib><description>Abstract
Motivation
Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops.
Results
Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification.
Availability and implementation
An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1).
Supplementary information
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac447</identifier><identifier>PMID: 35788263</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Communication ; Feedback ; Ligands ; Original Papers ; Research Design ; Software</subject><ispartof>Bioinformatics, 2022-09, Vol.38 (17), p.4117-4126</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</citedby><cites>FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</cites><orcidid>0000-0002-0476-3596 ; 0000-0002-1525-9969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438954/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438954/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac447$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35788263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Ying</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Jiang, Junyao</creatorcontrib><creatorcontrib>Zhou, Fengquan</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Blackshaw, Seth</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><title>LRLoop: a method to predict feedback loops in cell–cell communication</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract
Motivation
Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops.
Results
Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification.
Availability and implementation
An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1).
Supplementary information
Supplementary data are available at Bioinformatics online.</description><subject>Cell Communication</subject><subject>Feedback</subject><subject>Ligands</subject><subject>Original Papers</subject><subject>Research Design</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1OwzAQhS0EolC4QuUlm1An_knMAglVUJAqISFYW45_qCGJQ5wgseMO3JCT4KqlojtWM5K_eX4zD4BJis5TxPG0dN411ne17J0K07KXipB8DxylhKEkQ5Tvxx6zPCEFwiNwHMILQjQlhByCEaZ5UWQMH4H54mHhfXsBJaxNv_Qa9h62ndFO9dAao0upXmEVkQBdA5Wpqu_Pr1WBytf10DgVHfjmBBxYWQVzuqlj8HRz_Ti7TRb387vZ1SJRhLI-SS3JrMKGsFwzbgznhkfnHKdc0ULmUkqiSsaLDNnS8jLTmqpIMpPHJtd4DC7Xuu1Q1kYr0_SdrETbuVp2H8JLJ3ZfGrcUz_5dcIILTkkUONsIdP5tMKEXtQurfWRj_BBExgqK4t04jShbo6rzIXTGbr9JkVilIHZTEJsU4uDkr8nt2O_ZI5CuAT-0_xX9AYvWnk0</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>Xin, Ying</creator><creator>Lyu, Pin</creator><creator>Jiang, Junyao</creator><creator>Zhou, Fengquan</creator><creator>Wang, Jie</creator><creator>Blackshaw, Seth</creator><creator>Qian, Jiang</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0476-3596</orcidid><orcidid>https://orcid.org/0000-0002-1525-9969</orcidid></search><sort><creationdate>20220902</creationdate><title>LRLoop: a method to predict feedback loops in cell–cell communication</title><author>Xin, Ying ; Lyu, Pin ; Jiang, Junyao ; Zhou, Fengquan ; Wang, Jie ; Blackshaw, Seth ; Qian, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cell Communication</topic><topic>Feedback</topic><topic>Ligands</topic><topic>Original Papers</topic><topic>Research Design</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Ying</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Jiang, Junyao</creatorcontrib><creatorcontrib>Zhou, Fengquan</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Blackshaw, Seth</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin, Ying</au><au>Lyu, Pin</au><au>Jiang, Junyao</au><au>Zhou, Fengquan</au><au>Wang, Jie</au><au>Blackshaw, Seth</au><au>Qian, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LRLoop: a method to predict feedback loops in cell–cell communication</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-09-02</date><risdate>2022</risdate><volume>38</volume><issue>17</issue><spage>4117</spage><epage>4126</epage><pages>4117-4126</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract
Motivation
Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops.
Results
Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification.
Availability and implementation
An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1).
Supplementary information
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35788263</pmid><doi>10.1093/bioinformatics/btac447</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0476-3596</orcidid><orcidid>https://orcid.org/0000-0002-1525-9969</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2022-09, Vol.38 (17), p.4117-4126 |
issn | 1367-4803 1367-4811 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9438954 |
source | Oxford Journals Open Access Collection |
subjects | Cell Communication Feedback Ligands Original Papers Research Design Software |
title | LRLoop: a method to predict feedback loops in cell–cell communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LRLoop:%20a%20method%20to%20predict%20feedback%20loops%20in%20cell%E2%80%93cell%20communication&rft.jtitle=Bioinformatics&rft.au=Xin,%20Ying&rft.date=2022-09-02&rft.volume=38&rft.issue=17&rft.spage=4117&rft.epage=4126&rft.pages=4117-4126&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac447&rft_dat=%3Cproquest_TOX%3E2685036795%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685036795&rft_id=info:pmid/35788263&rft_oup_id=10.1093/bioinformatics/btac447&rfr_iscdi=true |