LRLoop: a method to predict feedback loops in cell–cell communication

Abstract Motivation Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2022-09, Vol.38 (17), p.4117-4126
Hauptverfasser: Xin, Ying, Lyu, Pin, Jiang, Junyao, Zhou, Fengquan, Wang, Jie, Blackshaw, Seth, Qian, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4126
container_issue 17
container_start_page 4117
container_title Bioinformatics
container_volume 38
creator Xin, Ying
Lyu, Pin
Jiang, Junyao
Zhou, Fengquan
Wang, Jie
Blackshaw, Seth
Qian, Jiang
description Abstract Motivation Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops. Results Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification. Availability and implementation An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1). Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btac447
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9438954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btac447</oup_id><sourcerecordid>2685036795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</originalsourceid><addsrcrecordid>eNqNkU1OwzAQhS0EolC4QuUlm1An_knMAglVUJAqISFYW45_qCGJQ5wgseMO3JCT4KqlojtWM5K_eX4zD4BJis5TxPG0dN411ne17J0K07KXipB8DxylhKEkQ5Tvxx6zPCEFwiNwHMILQjQlhByCEaZ5UWQMH4H54mHhfXsBJaxNv_Qa9h62ndFO9dAao0upXmEVkQBdA5Wpqu_Pr1WBytf10DgVHfjmBBxYWQVzuqlj8HRz_Ti7TRb387vZ1SJRhLI-SS3JrMKGsFwzbgznhkfnHKdc0ULmUkqiSsaLDNnS8jLTmqpIMpPHJtd4DC7Xuu1Q1kYr0_SdrETbuVp2H8JLJ3ZfGrcUz_5dcIILTkkUONsIdP5tMKEXtQurfWRj_BBExgqK4t04jShbo6rzIXTGbr9JkVilIHZTEJsU4uDkr8nt2O_ZI5CuAT-0_xX9AYvWnk0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685036795</pqid></control><display><type>article</type><title>LRLoop: a method to predict feedback loops in cell–cell communication</title><source>Oxford Journals Open Access Collection</source><creator>Xin, Ying ; Lyu, Pin ; Jiang, Junyao ; Zhou, Fengquan ; Wang, Jie ; Blackshaw, Seth ; Qian, Jiang</creator><creatorcontrib>Xin, Ying ; Lyu, Pin ; Jiang, Junyao ; Zhou, Fengquan ; Wang, Jie ; Blackshaw, Seth ; Qian, Jiang</creatorcontrib><description>Abstract Motivation Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops. Results Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification. Availability and implementation An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1). Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btac447</identifier><identifier>PMID: 35788263</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Communication ; Feedback ; Ligands ; Original Papers ; Research Design ; Software</subject><ispartof>Bioinformatics, 2022-09, Vol.38 (17), p.4117-4126</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</citedby><cites>FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</cites><orcidid>0000-0002-0476-3596 ; 0000-0002-1525-9969</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438954/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438954/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btac447$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35788263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Ying</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Jiang, Junyao</creatorcontrib><creatorcontrib>Zhou, Fengquan</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Blackshaw, Seth</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><title>LRLoop: a method to predict feedback loops in cell–cell communication</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops. Results Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification. Availability and implementation An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1). Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Cell Communication</subject><subject>Feedback</subject><subject>Ligands</subject><subject>Original Papers</subject><subject>Research Design</subject><subject>Software</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1OwzAQhS0EolC4QuUlm1An_knMAglVUJAqISFYW45_qCGJQ5wgseMO3JCT4KqlojtWM5K_eX4zD4BJis5TxPG0dN411ne17J0K07KXipB8DxylhKEkQ5Tvxx6zPCEFwiNwHMILQjQlhByCEaZ5UWQMH4H54mHhfXsBJaxNv_Qa9h62ndFO9dAao0upXmEVkQBdA5Wpqu_Pr1WBytf10DgVHfjmBBxYWQVzuqlj8HRz_Ti7TRb387vZ1SJRhLI-SS3JrMKGsFwzbgznhkfnHKdc0ULmUkqiSsaLDNnS8jLTmqpIMpPHJtd4DC7Xuu1Q1kYr0_SdrETbuVp2H8JLJ3ZfGrcUz_5dcIILTkkUONsIdP5tMKEXtQurfWRj_BBExgqK4t04jShbo6rzIXTGbr9JkVilIHZTEJsU4uDkr8nt2O_ZI5CuAT-0_xX9AYvWnk0</recordid><startdate>20220902</startdate><enddate>20220902</enddate><creator>Xin, Ying</creator><creator>Lyu, Pin</creator><creator>Jiang, Junyao</creator><creator>Zhou, Fengquan</creator><creator>Wang, Jie</creator><creator>Blackshaw, Seth</creator><creator>Qian, Jiang</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0476-3596</orcidid><orcidid>https://orcid.org/0000-0002-1525-9969</orcidid></search><sort><creationdate>20220902</creationdate><title>LRLoop: a method to predict feedback loops in cell–cell communication</title><author>Xin, Ying ; Lyu, Pin ; Jiang, Junyao ; Zhou, Fengquan ; Wang, Jie ; Blackshaw, Seth ; Qian, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-1f42fc3e467d69ee99e9ac49319c58a7aaa4cb69820fbf9b2dd5cd696e7d5c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cell Communication</topic><topic>Feedback</topic><topic>Ligands</topic><topic>Original Papers</topic><topic>Research Design</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Ying</creatorcontrib><creatorcontrib>Lyu, Pin</creatorcontrib><creatorcontrib>Jiang, Junyao</creatorcontrib><creatorcontrib>Zhou, Fengquan</creatorcontrib><creatorcontrib>Wang, Jie</creatorcontrib><creatorcontrib>Blackshaw, Seth</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xin, Ying</au><au>Lyu, Pin</au><au>Jiang, Junyao</au><au>Zhou, Fengquan</au><au>Wang, Jie</au><au>Blackshaw, Seth</au><au>Qian, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LRLoop: a method to predict feedback loops in cell–cell communication</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2022-09-02</date><risdate>2022</risdate><volume>38</volume><issue>17</issue><spage>4117</spage><epage>4126</epage><pages>4117-4126</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Abstract Motivation Intercellular communication (i.e. cell–cell communication) plays an essential role in multicellular organisms coordinating various biological processes. Previous studies discovered that feedback loops between two cell types are a widespread and vital signaling motif regulating development, regeneration and cancer progression. While many computational methods have been developed to predict cell–cell communication based on gene expression datasets, these methods often predict one-directional ligand–receptor interactions from sender to receiver cells and are not suitable to identify feedback loops. Results Here, we describe ligand–receptor loop (LRLoop), a new method for analyzing cell–cell communication based on bi-directional ligand–receptor interactions, where two pairs of ligand–receptor interactions are identified that are responsive to each other and thereby form a closed feedback loop. We first assessed LRLoop using bulk datasets and found our method significantly reduces the false positive rate seen with existing methods. Furthermore, we developed a new strategy to assess the performance of these methods in single-cell datasets. We used the between-tissue interactions as an indicator of potential false-positive prediction and found that LRLoop produced a lower fraction of between-tissue interactions than traditional methods. Finally, we applied LRLoop to the single-cell datasets obtained from retinal development. We discovered many new bi-directional ligand–receptor interactions among individual cell types that potentially control proliferation, neurogenesis and/or cell fate specification. Availability and implementation An R package is available at https://github.com/Pinlyu3/LRLoop. The source code can be found at figshare (https://doi.org/10.6084/m9.figshare.20126138.v1). The datasets can be found at figshare (https://doi.org/10.6084/m9.figshare.20126021.v1). Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35788263</pmid><doi>10.1093/bioinformatics/btac447</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0476-3596</orcidid><orcidid>https://orcid.org/0000-0002-1525-9969</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2022-09, Vol.38 (17), p.4117-4126
issn 1367-4803
1367-4811
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9438954
source Oxford Journals Open Access Collection
subjects Cell Communication
Feedback
Ligands
Original Papers
Research Design
Software
title LRLoop: a method to predict feedback loops in cell–cell communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LRLoop:%20a%20method%20to%20predict%20feedback%20loops%20in%20cell%E2%80%93cell%20communication&rft.jtitle=Bioinformatics&rft.au=Xin,%20Ying&rft.date=2022-09-02&rft.volume=38&rft.issue=17&rft.spage=4117&rft.epage=4126&rft.pages=4117-4126&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btac447&rft_dat=%3Cproquest_TOX%3E2685036795%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685036795&rft_id=info:pmid/35788263&rft_oup_id=10.1093/bioinformatics/btac447&rfr_iscdi=true