Hydrogel-Embedded Poly(Lactic-co-Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair

Objective Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell–derived exosomes (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cartilage 2022-07, Vol.13 (3), p.194760352211139-19476035221113959
Hauptverfasser: DiStefano, Tyler J., Vaso, Keti, Panebianco, Christopher J., Danias, George, Chionuma, Henry N., Kunnath, Kuriakose, Karoulias, Stylianos Z., Wang, Minghui, Xu, Peng, Davé, Rajesh N., Sahoo, Susmita, Weiser, Jennifer R., Iatridis, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19476035221113959
container_issue 3
container_start_page 194760352211139
container_title Cartilage
container_volume 13
creator DiStefano, Tyler J.
Vaso, Keti
Panebianco, Christopher J.
Danias, George
Chionuma, Henry N.
Kunnath, Kuriakose
Karoulias, Stylianos Z.
Wang, Minghui
Xu, Peng
Davé, Rajesh N.
Sahoo, Susmita
Weiser, Jennifer R.
Iatridis, James C.
description Objective Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell–derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system. Design We characterize biophysical and biochemical properties of normoxic (Nx) and hypoxic (Hx) preconditioned MSC-Exos from young, healthy donors and examine their effects on AF cell proliferation, migration, and gene expression. We then integrate a poly(lactic-co-glycolic acid) microsphere (PLGA µSphere) delivery platform within an interpenetrating network hydrogel to facilitate sustained MSC-Exo delivery. Results Hx MSC-Exos led to a more robust response in AF cell proliferation and migration than Nx MSC-Exos and was selected for a downstream protection experiment. Hx MSC-Exos maintained a healthy AF cell phenotype under a TNFα challenge in vitro and attenuated catabolic responses. In all functional assays, AF cell responses were more sensitive to Hx MSC-Exos than Nx MSC-Exos. PLGA µSpheres released MSC-Exos over a clinically relevant timescale without affecting hydrogel modulus or pH upon initial embedment and µSphere degradation. Conclusions This MSC-Exo treatment strategy may offer benefits of stem cell therapy without the need for exogenous stem cell transplantation by stimulating cell proliferation, promoting cell migration, and protecting cells from the degenerative proinflammatory microenvironment.
doi_str_mv 10.1177/19476035221113959
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9434687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_19476035221113959</sage_id><sourcerecordid>2708260331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-43b37ec9b9fd03b21e9f461f38630511591138ecaa9ae76dd6d33d49cb752e193</originalsourceid><addsrcrecordid>eNp9kd1q3DAQhUVpadK0D9A7XaYXTiXLsqybwnaz-YENDf25FrI03lWQra1kL_Fz9IWrZUMgFHo1w8w538AZhD5SckGpEJ-prERNGC9LSimTXL5Cp4dZUZOKvX7uGT9B71J6IKSuZcPfohOWBYRycYr-3Mw2hg34YtW3YC1YfB_8fL7WZnSmMKG49rMJ3hm8MM5-wnfOxJB2W4iQcBciHreAL8G7PcQZhw5v734si0uIeWDx6jGk0GflGPB9DH0YAX914QDfA14Mw-SnhK9cm5m5-Q477eJ79KbTPsGHp3qGfl2tfi5vivW369vlYl2YivKxqFjLBBjZys4S1pYUZFfVtGNNzQinlMscSgNGa6lB1NbWljFbSdMKXgKV7Ax9OXJ3U9uDNTCMUXu1i67XcVZBO_VyM7it2oS9khWr6kZkwPkTIIbfE6RR9S4Z8F4PEKakSkGaMufPaJbSo_SQXorQPZ-hRB2eqf55ZvZcHD1Jb0A9hCkOOY7_GP4CdVGfxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708260331</pqid></control><display><type>article</type><title>Hydrogel-Embedded Poly(Lactic-co-Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair</title><source>Sage Journals GOLD Open Access 2024</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>DiStefano, Tyler J. ; Vaso, Keti ; Panebianco, Christopher J. ; Danias, George ; Chionuma, Henry N. ; Kunnath, Kuriakose ; Karoulias, Stylianos Z. ; Wang, Minghui ; Xu, Peng ; Davé, Rajesh N. ; Sahoo, Susmita ; Weiser, Jennifer R. ; Iatridis, James C.</creator><creatorcontrib>DiStefano, Tyler J. ; Vaso, Keti ; Panebianco, Christopher J. ; Danias, George ; Chionuma, Henry N. ; Kunnath, Kuriakose ; Karoulias, Stylianos Z. ; Wang, Minghui ; Xu, Peng ; Davé, Rajesh N. ; Sahoo, Susmita ; Weiser, Jennifer R. ; Iatridis, James C.</creatorcontrib><description>Objective Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell–derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system. Design We characterize biophysical and biochemical properties of normoxic (Nx) and hypoxic (Hx) preconditioned MSC-Exos from young, healthy donors and examine their effects on AF cell proliferation, migration, and gene expression. We then integrate a poly(lactic-co-glycolic acid) microsphere (PLGA µSphere) delivery platform within an interpenetrating network hydrogel to facilitate sustained MSC-Exo delivery. Results Hx MSC-Exos led to a more robust response in AF cell proliferation and migration than Nx MSC-Exos and was selected for a downstream protection experiment. Hx MSC-Exos maintained a healthy AF cell phenotype under a TNFα challenge in vitro and attenuated catabolic responses. In all functional assays, AF cell responses were more sensitive to Hx MSC-Exos than Nx MSC-Exos. PLGA µSpheres released MSC-Exos over a clinically relevant timescale without affecting hydrogel modulus or pH upon initial embedment and µSphere degradation. Conclusions This MSC-Exo treatment strategy may offer benefits of stem cell therapy without the need for exogenous stem cell transplantation by stimulating cell proliferation, promoting cell migration, and protecting cells from the degenerative proinflammatory microenvironment.</description><identifier>ISSN: 1947-6035</identifier><identifier>EISSN: 1947-6043</identifier><identifier>DOI: 10.1177/19476035221113959</identifier><identifier>PMID: 36040157</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Original</subject><ispartof>Cartilage, 2022-07, Vol.13 (3), p.194760352211139-19476035221113959</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022 2022 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-43b37ec9b9fd03b21e9f461f38630511591138ecaa9ae76dd6d33d49cb752e193</citedby><cites>FETCH-LOGICAL-c415t-43b37ec9b9fd03b21e9f461f38630511591138ecaa9ae76dd6d33d49cb752e193</cites><orcidid>0000-0002-2186-0590 ; 0000-0001-9406-3085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434687/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434687/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,21946,27832,27903,27904,44924,45312,53770,53772</link.rule.ids></links><search><creatorcontrib>DiStefano, Tyler J.</creatorcontrib><creatorcontrib>Vaso, Keti</creatorcontrib><creatorcontrib>Panebianco, Christopher J.</creatorcontrib><creatorcontrib>Danias, George</creatorcontrib><creatorcontrib>Chionuma, Henry N.</creatorcontrib><creatorcontrib>Kunnath, Kuriakose</creatorcontrib><creatorcontrib>Karoulias, Stylianos Z.</creatorcontrib><creatorcontrib>Wang, Minghui</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Davé, Rajesh N.</creatorcontrib><creatorcontrib>Sahoo, Susmita</creatorcontrib><creatorcontrib>Weiser, Jennifer R.</creatorcontrib><creatorcontrib>Iatridis, James C.</creatorcontrib><title>Hydrogel-Embedded Poly(Lactic-co-Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair</title><title>Cartilage</title><description>Objective Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell–derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system. Design We characterize biophysical and biochemical properties of normoxic (Nx) and hypoxic (Hx) preconditioned MSC-Exos from young, healthy donors and examine their effects on AF cell proliferation, migration, and gene expression. We then integrate a poly(lactic-co-glycolic acid) microsphere (PLGA µSphere) delivery platform within an interpenetrating network hydrogel to facilitate sustained MSC-Exo delivery. Results Hx MSC-Exos led to a more robust response in AF cell proliferation and migration than Nx MSC-Exos and was selected for a downstream protection experiment. Hx MSC-Exos maintained a healthy AF cell phenotype under a TNFα challenge in vitro and attenuated catabolic responses. In all functional assays, AF cell responses were more sensitive to Hx MSC-Exos than Nx MSC-Exos. PLGA µSpheres released MSC-Exos over a clinically relevant timescale without affecting hydrogel modulus or pH upon initial embedment and µSphere degradation. Conclusions This MSC-Exo treatment strategy may offer benefits of stem cell therapy without the need for exogenous stem cell transplantation by stimulating cell proliferation, promoting cell migration, and protecting cells from the degenerative proinflammatory microenvironment.</description><subject>Original</subject><issn>1947-6035</issn><issn>1947-6043</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp9kd1q3DAQhUVpadK0D9A7XaYXTiXLsqybwnaz-YENDf25FrI03lWQra1kL_Fz9IWrZUMgFHo1w8w538AZhD5SckGpEJ-prERNGC9LSimTXL5Cp4dZUZOKvX7uGT9B71J6IKSuZcPfohOWBYRycYr-3Mw2hg34YtW3YC1YfB_8fL7WZnSmMKG49rMJ3hm8MM5-wnfOxJB2W4iQcBciHreAL8G7PcQZhw5v734si0uIeWDx6jGk0GflGPB9DH0YAX914QDfA14Mw-SnhK9cm5m5-Q477eJ79KbTPsGHp3qGfl2tfi5vivW369vlYl2YivKxqFjLBBjZys4S1pYUZFfVtGNNzQinlMscSgNGa6lB1NbWljFbSdMKXgKV7Ax9OXJ3U9uDNTCMUXu1i67XcVZBO_VyM7it2oS9khWr6kZkwPkTIIbfE6RR9S4Z8F4PEKakSkGaMufPaJbSo_SQXorQPZ-hRB2eqf55ZvZcHD1Jb0A9hCkOOY7_GP4CdVGfxw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>DiStefano, Tyler J.</creator><creator>Vaso, Keti</creator><creator>Panebianco, Christopher J.</creator><creator>Danias, George</creator><creator>Chionuma, Henry N.</creator><creator>Kunnath, Kuriakose</creator><creator>Karoulias, Stylianos Z.</creator><creator>Wang, Minghui</creator><creator>Xu, Peng</creator><creator>Davé, Rajesh N.</creator><creator>Sahoo, Susmita</creator><creator>Weiser, Jennifer R.</creator><creator>Iatridis, James C.</creator><general>SAGE Publications</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2186-0590</orcidid><orcidid>https://orcid.org/0000-0001-9406-3085</orcidid></search><sort><creationdate>20220701</creationdate><title>Hydrogel-Embedded Poly(Lactic-co-Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair</title><author>DiStefano, Tyler J. ; Vaso, Keti ; Panebianco, Christopher J. ; Danias, George ; Chionuma, Henry N. ; Kunnath, Kuriakose ; Karoulias, Stylianos Z. ; Wang, Minghui ; Xu, Peng ; Davé, Rajesh N. ; Sahoo, Susmita ; Weiser, Jennifer R. ; Iatridis, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-43b37ec9b9fd03b21e9f461f38630511591138ecaa9ae76dd6d33d49cb752e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DiStefano, Tyler J.</creatorcontrib><creatorcontrib>Vaso, Keti</creatorcontrib><creatorcontrib>Panebianco, Christopher J.</creatorcontrib><creatorcontrib>Danias, George</creatorcontrib><creatorcontrib>Chionuma, Henry N.</creatorcontrib><creatorcontrib>Kunnath, Kuriakose</creatorcontrib><creatorcontrib>Karoulias, Stylianos Z.</creatorcontrib><creatorcontrib>Wang, Minghui</creatorcontrib><creatorcontrib>Xu, Peng</creatorcontrib><creatorcontrib>Davé, Rajesh N.</creatorcontrib><creatorcontrib>Sahoo, Susmita</creatorcontrib><creatorcontrib>Weiser, Jennifer R.</creatorcontrib><creatorcontrib>Iatridis, James C.</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cartilage</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DiStefano, Tyler J.</au><au>Vaso, Keti</au><au>Panebianco, Christopher J.</au><au>Danias, George</au><au>Chionuma, Henry N.</au><au>Kunnath, Kuriakose</au><au>Karoulias, Stylianos Z.</au><au>Wang, Minghui</au><au>Xu, Peng</au><au>Davé, Rajesh N.</au><au>Sahoo, Susmita</au><au>Weiser, Jennifer R.</au><au>Iatridis, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogel-Embedded Poly(Lactic-co-Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair</atitle><jtitle>Cartilage</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>13</volume><issue>3</issue><spage>194760352211139</spage><epage>19476035221113959</epage><pages>194760352211139-19476035221113959</pages><issn>1947-6035</issn><eissn>1947-6043</eissn><abstract>Objective Intervertebral disk degeneration is a prevalent postoperative complication after discectomy, underscoring the need to develop preventative and bioactive treatment strategies that decelerate degeneration and seal annulus fibrosus (AF) defects. Human mesenchymal stem cell–derived exosomes (MSC-Exos) hold promise for cell-free bioactive repair; however, their ability to promote AF repair is poorly understood. The objective of this study was to evaluate the ability of MSC-Exos to promote endogenous AF repair processes and integrate MSC-Exos within a biomaterial delivery system. Design We characterize biophysical and biochemical properties of normoxic (Nx) and hypoxic (Hx) preconditioned MSC-Exos from young, healthy donors and examine their effects on AF cell proliferation, migration, and gene expression. We then integrate a poly(lactic-co-glycolic acid) microsphere (PLGA µSphere) delivery platform within an interpenetrating network hydrogel to facilitate sustained MSC-Exo delivery. Results Hx MSC-Exos led to a more robust response in AF cell proliferation and migration than Nx MSC-Exos and was selected for a downstream protection experiment. Hx MSC-Exos maintained a healthy AF cell phenotype under a TNFα challenge in vitro and attenuated catabolic responses. In all functional assays, AF cell responses were more sensitive to Hx MSC-Exos than Nx MSC-Exos. PLGA µSpheres released MSC-Exos over a clinically relevant timescale without affecting hydrogel modulus or pH upon initial embedment and µSphere degradation. Conclusions This MSC-Exo treatment strategy may offer benefits of stem cell therapy without the need for exogenous stem cell transplantation by stimulating cell proliferation, promoting cell migration, and protecting cells from the degenerative proinflammatory microenvironment.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>36040157</pmid><doi>10.1177/19476035221113959</doi><orcidid>https://orcid.org/0000-0002-2186-0590</orcidid><orcidid>https://orcid.org/0000-0001-9406-3085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1947-6035
ispartof Cartilage, 2022-07, Vol.13 (3), p.194760352211139-19476035221113959
issn 1947-6035
1947-6043
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9434687
source Sage Journals GOLD Open Access 2024; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Original
title Hydrogel-Embedded Poly(Lactic-co-Glycolic Acid) Microspheres for the Delivery of hMSC-Derived Exosomes to Promote Bioactive Annulus Fibrosus Repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogel-Embedded%20Poly(Lactic-co-Glycolic%20Acid)%20Microspheres%20for%20the%20Delivery%20of%20hMSC-Derived%20Exosomes%20to%20Promote%20Bioactive%20Annulus%20Fibrosus%20Repair&rft.jtitle=Cartilage&rft.au=DiStefano,%20Tyler%20J.&rft.date=2022-07-01&rft.volume=13&rft.issue=3&rft.spage=194760352211139&rft.epage=19476035221113959&rft.pages=194760352211139-19476035221113959&rft.issn=1947-6035&rft.eissn=1947-6043&rft_id=info:doi/10.1177/19476035221113959&rft_dat=%3Cproquest_pubme%3E2708260331%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708260331&rft_id=info:pmid/36040157&rft_sage_id=10.1177_19476035221113959&rfr_iscdi=true