Outpatient Randomized Crossover Comparison of Zone Model Predictive Control Automated Insulin Delivery with Weekly Data Driven Adaptation Versus Sensor-Augmented Pump: Results from the International Diabetes Closed-Loop Trial 4

Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with typ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes technology & therapeutics 2022-09, Vol.24 (9), p.635-642
Hauptverfasser: Pinsker, Jordan E, Dassau, Eyal, Deshpande, Sunil, Raghinaru, Dan, Buckingham, Bruce A, Kudva, Yogish C, Laffel, Lori M, Levy, Carol J, Church, Mei Mei, Desrochers, Hannah, Ekhlaspour, Laya, Kaur, Ravinder Jeet, Levister, Camilla, Shi, Dawei, Lum, John W, Kollman, Craig, Doyle, Francis J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 9
container_start_page 635
container_title Diabetes technology & therapeutics
container_volume 24
creator Pinsker, Jordan E
Dassau, Eyal
Deshpande, Sunil
Raghinaru, Dan
Buckingham, Bruce A
Kudva, Yogish C
Laffel, Lori M
Levy, Carol J
Church, Mei Mei
Desrochers, Hannah
Ekhlaspour, Laya
Kaur, Ravinder Jeet
Levister, Camilla
Shi, Dawei
Lum, John W
Kollman, Craig
Doyle, Francis J
description Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm. Each week, the AID insulin delivery settings were sequentially and automatically updated by an adaptation system running on the study phone. Primary outcome was sensor glucose time-in-range 70-180 mg/dL, with noninferiority in percent time below 54 mg/dL as a hierarchical outcome. Thirty-five participants completed the trial (mean age 39 ± 16 years, HbA1c at enrollment 6.9% ± 1.0%). Mean time-in-range 70-180 mg/dL was 66% with SAP versus 69% with AID (mean adjusted difference +2% [95% confidence interval: -1% to +6%],  = 0.22). Median time
doi_str_mv 10.1089/dia.2022.0084
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9422791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2708766120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-722a5a5ff283ec5a5885687813efbb624c1c1800076870a1a4b123d7e3a8d9593</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw5Ioscekli-182OGAtNrlo9KiVqWAxMXyJpPWxbGD7Sxa_i5_hAktFXDyyPP4nfHMm2VPGV0wKpsXndELTjlfUCrLe9khqyqRy6op7s8xp3nDqvogexTjNaVUFJw9zA6KqiobQeVh9vN0SqNOBlwi59p1fjA_oCOr4GP0Owhk5YdRBxO9I74nX7wD8t53YMlZgM60yewAGZeCt2Q5JT_ohO9PXJyscWQNFoGwJ99NuiKfAb7aPVnrpMk6YMKRZafHhPVR_hOEOEXyAVz0IV9OlwM2hVpn0zC-JOeAiimSPviBpCvAEgmC-_1UW7I2egsJIllZH6HLN96P5CIYTJWPswe9thGe3J5H2cc3ry9W7_LN6duT1XKTtyWrUi4415Wu-p7LAlqMpKxqKSQroN9ua162rGVyHiLeUs10uWW86AQUWnYNTvwoe3WjO07bAboW2w_aqjGYQYe98tqofzPOXKlLv1NNybloGAoc3woE_22CmNRgYgvWagd-iorXdSlkUwqB6PP_0Gs_4TgsUrhYUdeMU6TyG6qd9xmgv2uGUTXbR6F91GwfNdsH-Wd__-CO_uOX4hcE1cYT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708766120</pqid></control><display><type>article</type><title>Outpatient Randomized Crossover Comparison of Zone Model Predictive Control Automated Insulin Delivery with Weekly Data Driven Adaptation Versus Sensor-Augmented Pump: Results from the International Diabetes Closed-Loop Trial 4</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Pinsker, Jordan E ; Dassau, Eyal ; Deshpande, Sunil ; Raghinaru, Dan ; Buckingham, Bruce A ; Kudva, Yogish C ; Laffel, Lori M ; Levy, Carol J ; Church, Mei Mei ; Desrochers, Hannah ; Ekhlaspour, Laya ; Kaur, Ravinder Jeet ; Levister, Camilla ; Shi, Dawei ; Lum, John W ; Kollman, Craig ; Doyle, Francis J</creator><creatorcontrib>Pinsker, Jordan E ; Dassau, Eyal ; Deshpande, Sunil ; Raghinaru, Dan ; Buckingham, Bruce A ; Kudva, Yogish C ; Laffel, Lori M ; Levy, Carol J ; Church, Mei Mei ; Desrochers, Hannah ; Ekhlaspour, Laya ; Kaur, Ravinder Jeet ; Levister, Camilla ; Shi, Dawei ; Lum, John W ; Kollman, Craig ; Doyle, Francis J ; iDCL Trial Research Group ; for the iDCL Trial Research Group</creatorcontrib><description>Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm. Each week, the AID insulin delivery settings were sequentially and automatically updated by an adaptation system running on the study phone. Primary outcome was sensor glucose time-in-range 70-180 mg/dL, with noninferiority in percent time below 54 mg/dL as a hierarchical outcome. Thirty-five participants completed the trial (mean age 39 ± 16 years, HbA1c at enrollment 6.9% ± 1.0%). Mean time-in-range 70-180 mg/dL was 66% with SAP versus 69% with AID (mean adjusted difference +2% [95% confidence interval: -1% to +6%],  = 0.22). Median time &lt;70 mg/dL improved from 3.0% with SAP to 1.6% with AID (-1.5% [-2.4% to -0.5%],  = 0.002). The adaptation system decreased initial basal rates by a median of 4% (-8%, 16%) and increased initial carbohydrate ratios by a median of 45% (32%, 59%) after 13 weeks. Automated adaptation of insulin delivery settings with AID use did not significantly improve time-in-range in this very well-controlled population. Additional study and further refinement of the adaptation system are needed, especially in populations with differing degrees of baseline glycemic control, who may show larger benefits from adaptation.</description><identifier>ISSN: 1520-9156</identifier><identifier>EISSN: 1557-8593</identifier><identifier>DOI: 10.1089/dia.2022.0084</identifier><identifier>PMID: 35549708</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Adaptation ; Adult ; Automation ; Blood Glucose ; Case reports ; Closed loop systems ; Cross-Over Studies ; Diabetes ; Diabetes Mellitus, Type 1 - drug therapy ; Glucose monitoring ; Humans ; Hypoglycemic Agents - therapeutic use ; Infant, Newborn ; Infusion pumps ; Insulin ; Insulin - therapeutic use ; Insulin Infusion Systems ; Insulin, Regular, Human - therapeutic use ; Medical technology ; Middle Aged ; Original ; Outpatients ; Sensors ; Young Adult</subject><ispartof>Diabetes technology &amp; therapeutics, 2022-09, Vol.24 (9), p.635-642</ispartof><rights>Copyright Mary Ann Liebert, Inc. Sep 2022</rights><rights>Copyright 2022, Mary Ann Liebert, Inc., publishers 2022 Mary Ann Liebert, Inc., publishers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-722a5a5ff283ec5a5885687813efbb624c1c1800076870a1a4b123d7e3a8d9593</citedby><cites>FETCH-LOGICAL-c415t-722a5a5ff283ec5a5885687813efbb624c1c1800076870a1a4b123d7e3a8d9593</cites><orcidid>0000-0002-3293-9114 ; 0000-0003-2613-4966 ; 0000-0003-0285-6622 ; 0000-0002-9675-3001 ; 0000-0002-0006-4376 ; 0000-0001-5333-6892 ; 0000-0002-3263-1419</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35549708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinsker, Jordan E</creatorcontrib><creatorcontrib>Dassau, Eyal</creatorcontrib><creatorcontrib>Deshpande, Sunil</creatorcontrib><creatorcontrib>Raghinaru, Dan</creatorcontrib><creatorcontrib>Buckingham, Bruce A</creatorcontrib><creatorcontrib>Kudva, Yogish C</creatorcontrib><creatorcontrib>Laffel, Lori M</creatorcontrib><creatorcontrib>Levy, Carol J</creatorcontrib><creatorcontrib>Church, Mei Mei</creatorcontrib><creatorcontrib>Desrochers, Hannah</creatorcontrib><creatorcontrib>Ekhlaspour, Laya</creatorcontrib><creatorcontrib>Kaur, Ravinder Jeet</creatorcontrib><creatorcontrib>Levister, Camilla</creatorcontrib><creatorcontrib>Shi, Dawei</creatorcontrib><creatorcontrib>Lum, John W</creatorcontrib><creatorcontrib>Kollman, Craig</creatorcontrib><creatorcontrib>Doyle, Francis J</creatorcontrib><creatorcontrib>iDCL Trial Research Group</creatorcontrib><creatorcontrib>for the iDCL Trial Research Group</creatorcontrib><title>Outpatient Randomized Crossover Comparison of Zone Model Predictive Control Automated Insulin Delivery with Weekly Data Driven Adaptation Versus Sensor-Augmented Pump: Results from the International Diabetes Closed-Loop Trial 4</title><title>Diabetes technology &amp; therapeutics</title><addtitle>Diabetes Technol Ther</addtitle><description>Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm. Each week, the AID insulin delivery settings were sequentially and automatically updated by an adaptation system running on the study phone. Primary outcome was sensor glucose time-in-range 70-180 mg/dL, with noninferiority in percent time below 54 mg/dL as a hierarchical outcome. Thirty-five participants completed the trial (mean age 39 ± 16 years, HbA1c at enrollment 6.9% ± 1.0%). Mean time-in-range 70-180 mg/dL was 66% with SAP versus 69% with AID (mean adjusted difference +2% [95% confidence interval: -1% to +6%],  = 0.22). Median time &lt;70 mg/dL improved from 3.0% with SAP to 1.6% with AID (-1.5% [-2.4% to -0.5%],  = 0.002). The adaptation system decreased initial basal rates by a median of 4% (-8%, 16%) and increased initial carbohydrate ratios by a median of 45% (32%, 59%) after 13 weeks. Automated adaptation of insulin delivery settings with AID use did not significantly improve time-in-range in this very well-controlled population. Additional study and further refinement of the adaptation system are needed, especially in populations with differing degrees of baseline glycemic control, who may show larger benefits from adaptation.</description><subject>Adaptation</subject><subject>Adult</subject><subject>Automation</subject><subject>Blood Glucose</subject><subject>Case reports</subject><subject>Closed loop systems</subject><subject>Cross-Over Studies</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 1 - drug therapy</subject><subject>Glucose monitoring</subject><subject>Humans</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Infant, Newborn</subject><subject>Infusion pumps</subject><subject>Insulin</subject><subject>Insulin - therapeutic use</subject><subject>Insulin Infusion Systems</subject><subject>Insulin, Regular, Human - therapeutic use</subject><subject>Medical technology</subject><subject>Middle Aged</subject><subject>Original</subject><subject>Outpatients</subject><subject>Sensors</subject><subject>Young Adult</subject><issn>1520-9156</issn><issn>1557-8593</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw5Ioscekli-182OGAtNrlo9KiVqWAxMXyJpPWxbGD7Sxa_i5_hAktFXDyyPP4nfHMm2VPGV0wKpsXndELTjlfUCrLe9khqyqRy6op7s8xp3nDqvogexTjNaVUFJw9zA6KqiobQeVh9vN0SqNOBlwi59p1fjA_oCOr4GP0Owhk5YdRBxO9I74nX7wD8t53YMlZgM60yewAGZeCt2Q5JT_ohO9PXJyscWQNFoGwJ99NuiKfAb7aPVnrpMk6YMKRZafHhPVR_hOEOEXyAVz0IV9OlwM2hVpn0zC-JOeAiimSPviBpCvAEgmC-_1UW7I2egsJIllZH6HLN96P5CIYTJWPswe9thGe3J5H2cc3ry9W7_LN6duT1XKTtyWrUi4415Wu-p7LAlqMpKxqKSQroN9ua162rGVyHiLeUs10uWW86AQUWnYNTvwoe3WjO07bAboW2w_aqjGYQYe98tqofzPOXKlLv1NNybloGAoc3woE_22CmNRgYgvWagd-iorXdSlkUwqB6PP_0Gs_4TgsUrhYUdeMU6TyG6qd9xmgv2uGUTXbR6F91GwfNdsH-Wd__-CO_uOX4hcE1cYT</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Pinsker, Jordan E</creator><creator>Dassau, Eyal</creator><creator>Deshpande, Sunil</creator><creator>Raghinaru, Dan</creator><creator>Buckingham, Bruce A</creator><creator>Kudva, Yogish C</creator><creator>Laffel, Lori M</creator><creator>Levy, Carol J</creator><creator>Church, Mei Mei</creator><creator>Desrochers, Hannah</creator><creator>Ekhlaspour, Laya</creator><creator>Kaur, Ravinder Jeet</creator><creator>Levister, Camilla</creator><creator>Shi, Dawei</creator><creator>Lum, John W</creator><creator>Kollman, Craig</creator><creator>Doyle, Francis J</creator><general>Mary Ann Liebert, Inc</general><general>Mary Ann Liebert, Inc., publishers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3293-9114</orcidid><orcidid>https://orcid.org/0000-0003-2613-4966</orcidid><orcidid>https://orcid.org/0000-0003-0285-6622</orcidid><orcidid>https://orcid.org/0000-0002-9675-3001</orcidid><orcidid>https://orcid.org/0000-0002-0006-4376</orcidid><orcidid>https://orcid.org/0000-0001-5333-6892</orcidid><orcidid>https://orcid.org/0000-0002-3263-1419</orcidid></search><sort><creationdate>20220901</creationdate><title>Outpatient Randomized Crossover Comparison of Zone Model Predictive Control Automated Insulin Delivery with Weekly Data Driven Adaptation Versus Sensor-Augmented Pump: Results from the International Diabetes Closed-Loop Trial 4</title><author>Pinsker, Jordan E ; Dassau, Eyal ; Deshpande, Sunil ; Raghinaru, Dan ; Buckingham, Bruce A ; Kudva, Yogish C ; Laffel, Lori M ; Levy, Carol J ; Church, Mei Mei ; Desrochers, Hannah ; Ekhlaspour, Laya ; Kaur, Ravinder Jeet ; Levister, Camilla ; Shi, Dawei ; Lum, John W ; Kollman, Craig ; Doyle, Francis J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-722a5a5ff283ec5a5885687813efbb624c1c1800076870a1a4b123d7e3a8d9593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Adult</topic><topic>Automation</topic><topic>Blood Glucose</topic><topic>Case reports</topic><topic>Closed loop systems</topic><topic>Cross-Over Studies</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 1 - drug therapy</topic><topic>Glucose monitoring</topic><topic>Humans</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Infant, Newborn</topic><topic>Infusion pumps</topic><topic>Insulin</topic><topic>Insulin - therapeutic use</topic><topic>Insulin Infusion Systems</topic><topic>Insulin, Regular, Human - therapeutic use</topic><topic>Medical technology</topic><topic>Middle Aged</topic><topic>Original</topic><topic>Outpatients</topic><topic>Sensors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinsker, Jordan E</creatorcontrib><creatorcontrib>Dassau, Eyal</creatorcontrib><creatorcontrib>Deshpande, Sunil</creatorcontrib><creatorcontrib>Raghinaru, Dan</creatorcontrib><creatorcontrib>Buckingham, Bruce A</creatorcontrib><creatorcontrib>Kudva, Yogish C</creatorcontrib><creatorcontrib>Laffel, Lori M</creatorcontrib><creatorcontrib>Levy, Carol J</creatorcontrib><creatorcontrib>Church, Mei Mei</creatorcontrib><creatorcontrib>Desrochers, Hannah</creatorcontrib><creatorcontrib>Ekhlaspour, Laya</creatorcontrib><creatorcontrib>Kaur, Ravinder Jeet</creatorcontrib><creatorcontrib>Levister, Camilla</creatorcontrib><creatorcontrib>Shi, Dawei</creatorcontrib><creatorcontrib>Lum, John W</creatorcontrib><creatorcontrib>Kollman, Craig</creatorcontrib><creatorcontrib>Doyle, Francis J</creatorcontrib><creatorcontrib>iDCL Trial Research Group</creatorcontrib><creatorcontrib>for the iDCL Trial Research Group</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes technology &amp; therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinsker, Jordan E</au><au>Dassau, Eyal</au><au>Deshpande, Sunil</au><au>Raghinaru, Dan</au><au>Buckingham, Bruce A</au><au>Kudva, Yogish C</au><au>Laffel, Lori M</au><au>Levy, Carol J</au><au>Church, Mei Mei</au><au>Desrochers, Hannah</au><au>Ekhlaspour, Laya</au><au>Kaur, Ravinder Jeet</au><au>Levister, Camilla</au><au>Shi, Dawei</au><au>Lum, John W</au><au>Kollman, Craig</au><au>Doyle, Francis J</au><aucorp>iDCL Trial Research Group</aucorp><aucorp>for the iDCL Trial Research Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outpatient Randomized Crossover Comparison of Zone Model Predictive Control Automated Insulin Delivery with Weekly Data Driven Adaptation Versus Sensor-Augmented Pump: Results from the International Diabetes Closed-Loop Trial 4</atitle><jtitle>Diabetes technology &amp; therapeutics</jtitle><addtitle>Diabetes Technol Ther</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>24</volume><issue>9</issue><spage>635</spage><epage>642</epage><pages>635-642</pages><issn>1520-9156</issn><eissn>1557-8593</eissn><abstract>Automated insulin delivery (AID) systems have proven effective in increasing time-in-range during both clinical trials and real-world use. Further improvements in outcomes for single-hormone (insulin only) AID may be limited by suboptimal insulin delivery settings. Adults (≥18 years of age) with type 1 diabetes were randomized to either sensor-augmented pump (SAP) (inclusive of predictive low-glucose suspend) or adaptive zone model predictive control AID for 13 weeks, then crossed over to the other arm. Each week, the AID insulin delivery settings were sequentially and automatically updated by an adaptation system running on the study phone. Primary outcome was sensor glucose time-in-range 70-180 mg/dL, with noninferiority in percent time below 54 mg/dL as a hierarchical outcome. Thirty-five participants completed the trial (mean age 39 ± 16 years, HbA1c at enrollment 6.9% ± 1.0%). Mean time-in-range 70-180 mg/dL was 66% with SAP versus 69% with AID (mean adjusted difference +2% [95% confidence interval: -1% to +6%],  = 0.22). Median time &lt;70 mg/dL improved from 3.0% with SAP to 1.6% with AID (-1.5% [-2.4% to -0.5%],  = 0.002). The adaptation system decreased initial basal rates by a median of 4% (-8%, 16%) and increased initial carbohydrate ratios by a median of 45% (32%, 59%) after 13 weeks. Automated adaptation of insulin delivery settings with AID use did not significantly improve time-in-range in this very well-controlled population. Additional study and further refinement of the adaptation system are needed, especially in populations with differing degrees of baseline glycemic control, who may show larger benefits from adaptation.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>35549708</pmid><doi>10.1089/dia.2022.0084</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3293-9114</orcidid><orcidid>https://orcid.org/0000-0003-2613-4966</orcidid><orcidid>https://orcid.org/0000-0003-0285-6622</orcidid><orcidid>https://orcid.org/0000-0002-9675-3001</orcidid><orcidid>https://orcid.org/0000-0002-0006-4376</orcidid><orcidid>https://orcid.org/0000-0001-5333-6892</orcidid><orcidid>https://orcid.org/0000-0002-3263-1419</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-9156
ispartof Diabetes technology & therapeutics, 2022-09, Vol.24 (9), p.635-642
issn 1520-9156
1557-8593
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9422791
source MEDLINE; Alma/SFX Local Collection
subjects Adaptation
Adult
Automation
Blood Glucose
Case reports
Closed loop systems
Cross-Over Studies
Diabetes
Diabetes Mellitus, Type 1 - drug therapy
Glucose monitoring
Humans
Hypoglycemic Agents - therapeutic use
Infant, Newborn
Infusion pumps
Insulin
Insulin - therapeutic use
Insulin Infusion Systems
Insulin, Regular, Human - therapeutic use
Medical technology
Middle Aged
Original
Outpatients
Sensors
Young Adult
title Outpatient Randomized Crossover Comparison of Zone Model Predictive Control Automated Insulin Delivery with Weekly Data Driven Adaptation Versus Sensor-Augmented Pump: Results from the International Diabetes Closed-Loop Trial 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outpatient%20Randomized%20Crossover%20Comparison%20of%20Zone%20Model%20Predictive%20Control%20Automated%20Insulin%20Delivery%20with%20Weekly%20Data%20Driven%20Adaptation%20Versus%20Sensor-Augmented%20Pump:%20Results%20from%20the%20International%20Diabetes%20Closed-Loop%20Trial%204&rft.jtitle=Diabetes%20technology%20&%20therapeutics&rft.au=Pinsker,%20Jordan%20E&rft.aucorp=iDCL%20Trial%20Research%20Group&rft.date=2022-09-01&rft.volume=24&rft.issue=9&rft.spage=635&rft.epage=642&rft.pages=635-642&rft.issn=1520-9156&rft.eissn=1557-8593&rft_id=info:doi/10.1089/dia.2022.0084&rft_dat=%3Cproquest_pubme%3E2708766120%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708766120&rft_id=info:pmid/35549708&rfr_iscdi=true