Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study
Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2022, Vol.2022 (1), p.2044577 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 2044577 |
container_title | BioMed research international |
container_volume | 2022 |
creator | Kullappan, Malathi Benedict, Balakrishnan Anna Rajajagadeesan, Anusha Baskaran, Padmasini Periadurai, Nanthini Devi Ambrose, Jenifer Mallavarpu Gandhamaneni, Sri Harshini Nakkella, Aruna Kumari Agarwal, Alok Veeraraghavan, Vishnu Priya Surapaneni, Krishna Mohan |
description | Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity. |
doi_str_mv | 10.1155/2022/2044577 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715281536</galeid><sourcerecordid>A715281536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-9d8039c308e5b0ebbeabea8a025803b024b6181c38b306aa7c166489f1a746bf3</originalsourceid><addsrcrecordid>eNp9ks9rFDEUxwdRbKm9eZaAF0FXk8mPyXgoLKW1hVoLVQ9ewptMZjc1m9RkxtKT_7pv2XWpHgwhefA-75v3Ja-qnjP6ljEp39W0rvEQQjbNo2q_5kzMFBPs8S7mfK86LOWG4tJM0VY9rfa4okJhzX716yQEWHhL5tb3BAoBcpVGF0cPgZzHpe_8mDKBBfhYRjIuHblMGOXJjlNG5ioj7iO5vObkzAVvoTiSBvLNfwfy1eepvCdz8jEFZ6cAGaPeheDjglyPU3__rHoyQCjucHsfVF9OTz4fn80uPn04P55fzKxo1Dhre015aznVTnbUdZ0D3BpoLTHR0Vp0imlmue44VQCNZUoJ3Q4MGqG6gR9URxvd26lbud6iQ-ze3Ga_gnxvEnjzdyb6pVmkn6YVNVWUosCrrUBOPyZXRrPyxaIViC5NxdQNbSmTrdaIvvwHvUlTjmhvTTVCKqkeUAsIzvg4JHzXrkXNvGGy1kxyhdSbDWVzKiW7Ydcyo2Y9AmY9AmY7Aoi_eGhzB__5cAReb4Cljz3c-f_L_QbRKbdj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707456568</pqid></control><display><type>article</type><title>Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Kullappan, Malathi ; Benedict, Balakrishnan Anna ; Rajajagadeesan, Anusha ; Baskaran, Padmasini ; Periadurai, Nanthini Devi ; Ambrose, Jenifer Mallavarpu ; Gandhamaneni, Sri Harshini ; Nakkella, Aruna Kumari ; Agarwal, Alok ; Veeraraghavan, Vishnu Priya ; Surapaneni, Krishna Mohan</creator><contributor>Saeed, Mohd</contributor><creatorcontrib>Kullappan, Malathi ; Benedict, Balakrishnan Anna ; Rajajagadeesan, Anusha ; Baskaran, Padmasini ; Periadurai, Nanthini Devi ; Ambrose, Jenifer Mallavarpu ; Gandhamaneni, Sri Harshini ; Nakkella, Aruna Kumari ; Agarwal, Alok ; Veeraraghavan, Vishnu Priya ; Surapaneni, Krishna Mohan ; Saeed, Mohd</creatorcontrib><description>Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity.</description><identifier>ISSN: 2314-6133</identifier><identifier>ISSN: 2314-6141</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2022/2044577</identifier><identifier>PMID: 36046457</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Amino acids ; Binding sites ; Bioavailability ; Biosafety ; Crystal structure ; Dengue fever ; Disease transmission ; DNA helicase ; DNA Helicases - genetics ; Dynamic stability ; Ellagic Acid ; Encephalitis ; Enzymatic activity ; Fetuses ; Fibroblasts ; Flavivirus ; Genomes ; Guillain-Barre syndrome ; Health aspects ; Humans ; Hypericin ; Infections ; Ligands ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; Molecular modelling ; Mosquitoes ; Pharmacokinetics ; Phylogeny ; Phytochemicals ; Proteins ; RNA Helicases - genetics ; Serine Endopeptidases - genetics ; Stability analysis ; Trajectory analysis ; Transcription ; Vector-borne diseases ; Viral Nonstructural Proteins - chemistry ; Viral proteins ; Virus Replication ; Viruses ; Zika virus ; Zika Virus - chemistry ; Zika Virus Infection</subject><ispartof>BioMed research international, 2022, Vol.2022 (1), p.2044577</ispartof><rights>Copyright © 2022 Malathi Kullappan et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Malathi Kullappan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Malathi Kullappan et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-9d8039c308e5b0ebbeabea8a025803b024b6181c38b306aa7c166489f1a746bf3</citedby><cites>FETCH-LOGICAL-c476t-9d8039c308e5b0ebbeabea8a025803b024b6181c38b306aa7c166489f1a746bf3</cites><orcidid>0000-0001-8184-398X ; 0000-0002-5532-7188 ; 0000-0002-3540-8490 ; 0000-0002-3223-6005 ; 0000-0002-9609-6697 ; 0000-0001-9111-9282 ; 0000-0001-5292-6129 ; 0000-0003-2981-6751 ; 0000-0002-5071-9860 ; 0000-0002-8470-1634 ; 0000-0002-5204-5708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420600/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420600/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36046457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Saeed, Mohd</contributor><creatorcontrib>Kullappan, Malathi</creatorcontrib><creatorcontrib>Benedict, Balakrishnan Anna</creatorcontrib><creatorcontrib>Rajajagadeesan, Anusha</creatorcontrib><creatorcontrib>Baskaran, Padmasini</creatorcontrib><creatorcontrib>Periadurai, Nanthini Devi</creatorcontrib><creatorcontrib>Ambrose, Jenifer Mallavarpu</creatorcontrib><creatorcontrib>Gandhamaneni, Sri Harshini</creatorcontrib><creatorcontrib>Nakkella, Aruna Kumari</creatorcontrib><creatorcontrib>Agarwal, Alok</creatorcontrib><creatorcontrib>Veeraraghavan, Vishnu Priya</creatorcontrib><creatorcontrib>Surapaneni, Krishna Mohan</creatorcontrib><title>Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity.</description><subject>Amino acids</subject><subject>Binding sites</subject><subject>Bioavailability</subject><subject>Biosafety</subject><subject>Crystal structure</subject><subject>Dengue fever</subject><subject>Disease transmission</subject><subject>DNA helicase</subject><subject>DNA Helicases - genetics</subject><subject>Dynamic stability</subject><subject>Ellagic Acid</subject><subject>Encephalitis</subject><subject>Enzymatic activity</subject><subject>Fetuses</subject><subject>Fibroblasts</subject><subject>Flavivirus</subject><subject>Genomes</subject><subject>Guillain-Barre syndrome</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hypericin</subject><subject>Infections</subject><subject>Ligands</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular modelling</subject><subject>Mosquitoes</subject><subject>Pharmacokinetics</subject><subject>Phylogeny</subject><subject>Phytochemicals</subject><subject>Proteins</subject><subject>RNA Helicases - genetics</subject><subject>Serine Endopeptidases - genetics</subject><subject>Stability analysis</subject><subject>Trajectory analysis</subject><subject>Transcription</subject><subject>Vector-borne diseases</subject><subject>Viral Nonstructural Proteins - chemistry</subject><subject>Viral proteins</subject><subject>Virus Replication</subject><subject>Viruses</subject><subject>Zika virus</subject><subject>Zika Virus - chemistry</subject><subject>Zika Virus Infection</subject><issn>2314-6133</issn><issn>2314-6141</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ks9rFDEUxwdRbKm9eZaAF0FXk8mPyXgoLKW1hVoLVQ9ewptMZjc1m9RkxtKT_7pv2XWpHgwhefA-75v3Ja-qnjP6ljEp39W0rvEQQjbNo2q_5kzMFBPs8S7mfK86LOWG4tJM0VY9rfa4okJhzX716yQEWHhL5tb3BAoBcpVGF0cPgZzHpe_8mDKBBfhYRjIuHblMGOXJjlNG5ioj7iO5vObkzAVvoTiSBvLNfwfy1eepvCdz8jEFZ6cAGaPeheDjglyPU3__rHoyQCjucHsfVF9OTz4fn80uPn04P55fzKxo1Dhre015aznVTnbUdZ0D3BpoLTHR0Vp0imlmue44VQCNZUoJ3Q4MGqG6gR9URxvd26lbud6iQ-ze3Ga_gnxvEnjzdyb6pVmkn6YVNVWUosCrrUBOPyZXRrPyxaIViC5NxdQNbSmTrdaIvvwHvUlTjmhvTTVCKqkeUAsIzvg4JHzXrkXNvGGy1kxyhdSbDWVzKiW7Ydcyo2Y9AmY9AmY7Aoi_eGhzB__5cAReb4Cljz3c-f_L_QbRKbdj</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kullappan, Malathi</creator><creator>Benedict, Balakrishnan Anna</creator><creator>Rajajagadeesan, Anusha</creator><creator>Baskaran, Padmasini</creator><creator>Periadurai, Nanthini Devi</creator><creator>Ambrose, Jenifer Mallavarpu</creator><creator>Gandhamaneni, Sri Harshini</creator><creator>Nakkella, Aruna Kumari</creator><creator>Agarwal, Alok</creator><creator>Veeraraghavan, Vishnu Priya</creator><creator>Surapaneni, Krishna Mohan</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8184-398X</orcidid><orcidid>https://orcid.org/0000-0002-5532-7188</orcidid><orcidid>https://orcid.org/0000-0002-3540-8490</orcidid><orcidid>https://orcid.org/0000-0002-3223-6005</orcidid><orcidid>https://orcid.org/0000-0002-9609-6697</orcidid><orcidid>https://orcid.org/0000-0001-9111-9282</orcidid><orcidid>https://orcid.org/0000-0001-5292-6129</orcidid><orcidid>https://orcid.org/0000-0003-2981-6751</orcidid><orcidid>https://orcid.org/0000-0002-5071-9860</orcidid><orcidid>https://orcid.org/0000-0002-8470-1634</orcidid><orcidid>https://orcid.org/0000-0002-5204-5708</orcidid></search><sort><creationdate>2022</creationdate><title>Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study</title><author>Kullappan, Malathi ; Benedict, Balakrishnan Anna ; Rajajagadeesan, Anusha ; Baskaran, Padmasini ; Periadurai, Nanthini Devi ; Ambrose, Jenifer Mallavarpu ; Gandhamaneni, Sri Harshini ; Nakkella, Aruna Kumari ; Agarwal, Alok ; Veeraraghavan, Vishnu Priya ; Surapaneni, Krishna Mohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-9d8039c308e5b0ebbeabea8a025803b024b6181c38b306aa7c166489f1a746bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Binding sites</topic><topic>Bioavailability</topic><topic>Biosafety</topic><topic>Crystal structure</topic><topic>Dengue fever</topic><topic>Disease transmission</topic><topic>DNA helicase</topic><topic>DNA Helicases - genetics</topic><topic>Dynamic stability</topic><topic>Ellagic Acid</topic><topic>Encephalitis</topic><topic>Enzymatic activity</topic><topic>Fetuses</topic><topic>Fibroblasts</topic><topic>Flavivirus</topic><topic>Genomes</topic><topic>Guillain-Barre syndrome</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hypericin</topic><topic>Infections</topic><topic>Ligands</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular modelling</topic><topic>Mosquitoes</topic><topic>Pharmacokinetics</topic><topic>Phylogeny</topic><topic>Phytochemicals</topic><topic>Proteins</topic><topic>RNA Helicases - genetics</topic><topic>Serine Endopeptidases - genetics</topic><topic>Stability analysis</topic><topic>Trajectory analysis</topic><topic>Transcription</topic><topic>Vector-borne diseases</topic><topic>Viral Nonstructural Proteins - chemistry</topic><topic>Viral proteins</topic><topic>Virus Replication</topic><topic>Viruses</topic><topic>Zika virus</topic><topic>Zika Virus - chemistry</topic><topic>Zika Virus Infection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kullappan, Malathi</creatorcontrib><creatorcontrib>Benedict, Balakrishnan Anna</creatorcontrib><creatorcontrib>Rajajagadeesan, Anusha</creatorcontrib><creatorcontrib>Baskaran, Padmasini</creatorcontrib><creatorcontrib>Periadurai, Nanthini Devi</creatorcontrib><creatorcontrib>Ambrose, Jenifer Mallavarpu</creatorcontrib><creatorcontrib>Gandhamaneni, Sri Harshini</creatorcontrib><creatorcontrib>Nakkella, Aruna Kumari</creatorcontrib><creatorcontrib>Agarwal, Alok</creatorcontrib><creatorcontrib>Veeraraghavan, Vishnu Priya</creatorcontrib><creatorcontrib>Surapaneni, Krishna Mohan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kullappan, Malathi</au><au>Benedict, Balakrishnan Anna</au><au>Rajajagadeesan, Anusha</au><au>Baskaran, Padmasini</au><au>Periadurai, Nanthini Devi</au><au>Ambrose, Jenifer Mallavarpu</au><au>Gandhamaneni, Sri Harshini</au><au>Nakkella, Aruna Kumari</au><au>Agarwal, Alok</au><au>Veeraraghavan, Vishnu Priya</au><au>Surapaneni, Krishna Mohan</au><au>Saeed, Mohd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><spage>2044577</spage><pages>2044577-</pages><issn>2314-6133</issn><issn>2314-6141</issn><eissn>2314-6141</eissn><abstract>Zika virus is a member of the Flaviviridae family and genus Flavivirus, which has a phylogenetic relationship with spondweni virus. It spreads to humans through a mosquito bite. To identify potential inhibitors for the Zika virus with biosafety, we selected natural antiviral compounds isolated from plant sources and screened against NS3 helicase of the Zika virus. The enzymatic activity of the NS3 helicase is associated with the C-terminal region and is concerned with RNA synthesis and genome replication. It serves as a crucial target for the Zika virus. We carried out molecular docking for the target NS3 helicase against the selected 25 phytochemicals using AutoDock Vina software. Among the 25 plant compounds, we identified NS3 helicase-ellagic acid (-9.9 kcal/mol), NS3 helicase-hypericin (-9.8 kcal/mol), and NS3 helicase-pentagalloylglucose (-9.5 kcal/mol) as the best binding affinity compounds based on their binding energies. To understand the stability of these complexes, molecular dynamic simulations were executed and the trajectory analysis exposed that the NS3 helicase-ellagic acid complex possesses greater stability than the other two complexes such as NS3 helicase-hypericin and NS3 helicase-pentagalloylglucose. The ADMET property prediction of these compounds resulted in nontoxicity and noncarcinogenicity.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>36046457</pmid><doi>10.1155/2022/2044577</doi><orcidid>https://orcid.org/0000-0001-8184-398X</orcidid><orcidid>https://orcid.org/0000-0002-5532-7188</orcidid><orcidid>https://orcid.org/0000-0002-3540-8490</orcidid><orcidid>https://orcid.org/0000-0002-3223-6005</orcidid><orcidid>https://orcid.org/0000-0002-9609-6697</orcidid><orcidid>https://orcid.org/0000-0001-9111-9282</orcidid><orcidid>https://orcid.org/0000-0001-5292-6129</orcidid><orcidid>https://orcid.org/0000-0003-2981-6751</orcidid><orcidid>https://orcid.org/0000-0002-5071-9860</orcidid><orcidid>https://orcid.org/0000-0002-8470-1634</orcidid><orcidid>https://orcid.org/0000-0002-5204-5708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2022, Vol.2022 (1), p.2044577 |
issn | 2314-6133 2314-6141 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420600 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Amino acids Binding sites Bioavailability Biosafety Crystal structure Dengue fever Disease transmission DNA helicase DNA Helicases - genetics Dynamic stability Ellagic Acid Encephalitis Enzymatic activity Fetuses Fibroblasts Flavivirus Genomes Guillain-Barre syndrome Health aspects Humans Hypericin Infections Ligands Molecular docking Molecular Docking Simulation Molecular dynamics Molecular modelling Mosquitoes Pharmacokinetics Phylogeny Phytochemicals Proteins RNA Helicases - genetics Serine Endopeptidases - genetics Stability analysis Trajectory analysis Transcription Vector-borne diseases Viral Nonstructural Proteins - chemistry Viral proteins Virus Replication Viruses Zika virus Zika Virus - chemistry Zika Virus Infection |
title | Ellagic Acid as a Potential Inhibitor against the Nonstructural Protein NS3 Helicase of Zika Virus: A Molecular Modelling Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ellagic%20Acid%20as%20a%20Potential%20Inhibitor%20against%20the%20Nonstructural%20Protein%20NS3%20Helicase%20of%20Zika%20Virus:%20A%20Molecular%20Modelling%20Study&rft.jtitle=BioMed%20research%20international&rft.au=Kullappan,%20Malathi&rft.date=2022&rft.volume=2022&rft.issue=1&rft.spage=2044577&rft.pages=2044577-&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2022/2044577&rft_dat=%3Cgale_pubme%3EA715281536%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707456568&rft_id=info:pmid/36046457&rft_galeid=A715281536&rfr_iscdi=true |