GigaAssay – An adaptable high-throughput saturation mutagenesis assay platform

High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the “GigaAssay”, a modular high-throughput one-pot assay system for measuring molec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genomics (San Diego, Calif.) Calif.), 2022-07, Vol.114 (4), p.110439-110439, Article 110439
Hauptverfasser: Benjamin, Ronald, Giacoletto, Christopher J., FitzHugh, Zachary T., Eames, Danielle, Buczek, Lindsay, Wu, Xiaogang, Newsome, Jacklyn, Han, Mira V., Pearson, Tony, Wei, Zhi, Banerjee, Atoshi, Brown, Lancer, Valente, Liz J., Shen, Shirley, Deng, Hong-Wen, Schiller, Martin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110439
container_issue 4
container_start_page 110439
container_title Genomics (San Diego, Calif.)
container_volume 114
creator Benjamin, Ronald
Giacoletto, Christopher J.
FitzHugh, Zachary T.
Eames, Danielle
Buczek, Lindsay
Wu, Xiaogang
Newsome, Jacklyn
Han, Mira V.
Pearson, Tony
Wei, Zhi
Banerjee, Atoshi
Brown, Lancer
Valente, Liz J.
Shen, Shirley
Deng, Hong-Wen
Schiller, Martin R.
description High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the “GigaAssay”, a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared. [Display omitted] •There is no accurate high-throughput assay to study how mutants impact a gene function•We established an accurate, high-throughput functional assay of transcriptional activity of Tat mutants in human cells•We produced a comprehensive saturating mutagenic landscape of the Tat transcription factor and 1000 s of doubles mutants for intragenic epistasis•Structure / Activity / Tolerance 3D plots expand upon traditional SAR studies•The new GigaAssay should be extensible to the analysis of other functions and genes.•Our characterization of Tat mutants highlights the importance of intergenic epistasis in viral transciption infection and provides a framework for interpretation of Tat mutants and their effect on viral latency.
doi_str_mv 10.1016/j.ygeno.2022.110439
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888754322001847</els_id><sourcerecordid>35905834</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-510bb36f084191a0d8c04e2839deb6758dee2d74cb1331d27ec102090249c5013</originalsourceid><addsrcrecordid>eNp9kE1u2zAQRokgQeymPUGAQBeQO_yRTC4SwDDStECAZpGsCYocSzRsSSApA97lDrlhThIlbo1m09UsZt73YR4hlxRmFGj5fT3b19h2MwaMzSgFwdUJmVKQKpelKE_JFKSU-bwQfEK-xLgGAMUlOycTXigoJBdT8nDna7OI0eyz1-eXbNFmxpk-mWqDWePrJk9N6Ia66YeURZOGYJLv2mw7JDOWY_QxMx90vzFp1YXtV3K2MpuI3_7MC_L04_Zx-TO__333a7m4z60oVMoLClXFyxVIQRU14KQFgUxy5bAq54V0iMzNha0o59SxOVoKDBQwoWwBlF-Qm0NuP1RbdBbbFMxG98FvTdjrznj9edP6RtfdTivBgAMbA_ghwIYuxoCrI0tBvwvWa_0hWL8L1gfBI3X1b-2R-Wt0PLg-HOD4_M5j0NF6bC06H9Am7Tr_34I3b7SP-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GigaAssay – An adaptable high-throughput saturation mutagenesis assay platform</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Benjamin, Ronald ; Giacoletto, Christopher J. ; FitzHugh, Zachary T. ; Eames, Danielle ; Buczek, Lindsay ; Wu, Xiaogang ; Newsome, Jacklyn ; Han, Mira V. ; Pearson, Tony ; Wei, Zhi ; Banerjee, Atoshi ; Brown, Lancer ; Valente, Liz J. ; Shen, Shirley ; Deng, Hong-Wen ; Schiller, Martin R.</creator><creatorcontrib>Benjamin, Ronald ; Giacoletto, Christopher J. ; FitzHugh, Zachary T. ; Eames, Danielle ; Buczek, Lindsay ; Wu, Xiaogang ; Newsome, Jacklyn ; Han, Mira V. ; Pearson, Tony ; Wei, Zhi ; Banerjee, Atoshi ; Brown, Lancer ; Valente, Liz J. ; Shen, Shirley ; Deng, Hong-Wen ; Schiller, Martin R.</creatorcontrib><description>High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the “GigaAssay”, a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared. [Display omitted] •There is no accurate high-throughput assay to study how mutants impact a gene function•We established an accurate, high-throughput functional assay of transcriptional activity of Tat mutants in human cells•We produced a comprehensive saturating mutagenic landscape of the Tat transcription factor and 1000 s of doubles mutants for intragenic epistasis•Structure / Activity / Tolerance 3D plots expand upon traditional SAR studies•The new GigaAssay should be extensible to the analysis of other functions and genes.•Our characterization of Tat mutants highlights the importance of intergenic epistasis in viral transciption infection and provides a framework for interpretation of Tat mutants and their effect on viral latency.</description><identifier>ISSN: 0888-7543</identifier><identifier>EISSN: 1089-8646</identifier><identifier>DOI: 10.1016/j.ygeno.2022.110439</identifier><identifier>PMID: 35905834</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Line ; High-throughput assay ; HIV Long Terminal Repeat ; HIV-1 - genetics ; Intragenic epistasis ; Mutagenesis ; Protein structure ; Saturation mutagenesis ; Tat ; tat Gene Products, Human Immunodeficiency Virus - genetics ; tat Gene Products, Human Immunodeficiency Virus - metabolism ; Transcription ; Transcriptional Activation</subject><ispartof>Genomics (San Diego, Calif.), 2022-07, Vol.114 (4), p.110439-110439, Article 110439</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-510bb36f084191a0d8c04e2839deb6758dee2d74cb1331d27ec102090249c5013</citedby><cites>FETCH-LOGICAL-c459t-510bb36f084191a0d8c04e2839deb6758dee2d74cb1331d27ec102090249c5013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ygeno.2022.110439$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35905834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benjamin, Ronald</creatorcontrib><creatorcontrib>Giacoletto, Christopher J.</creatorcontrib><creatorcontrib>FitzHugh, Zachary T.</creatorcontrib><creatorcontrib>Eames, Danielle</creatorcontrib><creatorcontrib>Buczek, Lindsay</creatorcontrib><creatorcontrib>Wu, Xiaogang</creatorcontrib><creatorcontrib>Newsome, Jacklyn</creatorcontrib><creatorcontrib>Han, Mira V.</creatorcontrib><creatorcontrib>Pearson, Tony</creatorcontrib><creatorcontrib>Wei, Zhi</creatorcontrib><creatorcontrib>Banerjee, Atoshi</creatorcontrib><creatorcontrib>Brown, Lancer</creatorcontrib><creatorcontrib>Valente, Liz J.</creatorcontrib><creatorcontrib>Shen, Shirley</creatorcontrib><creatorcontrib>Deng, Hong-Wen</creatorcontrib><creatorcontrib>Schiller, Martin R.</creatorcontrib><title>GigaAssay – An adaptable high-throughput saturation mutagenesis assay platform</title><title>Genomics (San Diego, Calif.)</title><addtitle>Genomics</addtitle><description>High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the “GigaAssay”, a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared. [Display omitted] •There is no accurate high-throughput assay to study how mutants impact a gene function•We established an accurate, high-throughput functional assay of transcriptional activity of Tat mutants in human cells•We produced a comprehensive saturating mutagenic landscape of the Tat transcription factor and 1000 s of doubles mutants for intragenic epistasis•Structure / Activity / Tolerance 3D plots expand upon traditional SAR studies•The new GigaAssay should be extensible to the analysis of other functions and genes.•Our characterization of Tat mutants highlights the importance of intergenic epistasis in viral transciption infection and provides a framework for interpretation of Tat mutants and their effect on viral latency.</description><subject>Cell Line</subject><subject>High-throughput assay</subject><subject>HIV Long Terminal Repeat</subject><subject>HIV-1 - genetics</subject><subject>Intragenic epistasis</subject><subject>Mutagenesis</subject><subject>Protein structure</subject><subject>Saturation mutagenesis</subject><subject>Tat</subject><subject>tat Gene Products, Human Immunodeficiency Virus - genetics</subject><subject>tat Gene Products, Human Immunodeficiency Virus - metabolism</subject><subject>Transcription</subject><subject>Transcriptional Activation</subject><issn>0888-7543</issn><issn>1089-8646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1u2zAQRokgQeymPUGAQBeQO_yRTC4SwDDStECAZpGsCYocSzRsSSApA97lDrlhThIlbo1m09UsZt73YR4hlxRmFGj5fT3b19h2MwaMzSgFwdUJmVKQKpelKE_JFKSU-bwQfEK-xLgGAMUlOycTXigoJBdT8nDna7OI0eyz1-eXbNFmxpk-mWqDWePrJk9N6Ia66YeURZOGYJLv2mw7JDOWY_QxMx90vzFp1YXtV3K2MpuI3_7MC_L04_Zx-TO__333a7m4z60oVMoLClXFyxVIQRU14KQFgUxy5bAq54V0iMzNha0o59SxOVoKDBQwoWwBlF-Qm0NuP1RbdBbbFMxG98FvTdjrznj9edP6RtfdTivBgAMbA_ghwIYuxoCrI0tBvwvWa_0hWL8L1gfBI3X1b-2R-Wt0PLg-HOD4_M5j0NF6bC06H9Am7Tr_34I3b7SP-Q</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Benjamin, Ronald</creator><creator>Giacoletto, Christopher J.</creator><creator>FitzHugh, Zachary T.</creator><creator>Eames, Danielle</creator><creator>Buczek, Lindsay</creator><creator>Wu, Xiaogang</creator><creator>Newsome, Jacklyn</creator><creator>Han, Mira V.</creator><creator>Pearson, Tony</creator><creator>Wei, Zhi</creator><creator>Banerjee, Atoshi</creator><creator>Brown, Lancer</creator><creator>Valente, Liz J.</creator><creator>Shen, Shirley</creator><creator>Deng, Hong-Wen</creator><creator>Schiller, Martin R.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>202207</creationdate><title>GigaAssay – An adaptable high-throughput saturation mutagenesis assay platform</title><author>Benjamin, Ronald ; Giacoletto, Christopher J. ; FitzHugh, Zachary T. ; Eames, Danielle ; Buczek, Lindsay ; Wu, Xiaogang ; Newsome, Jacklyn ; Han, Mira V. ; Pearson, Tony ; Wei, Zhi ; Banerjee, Atoshi ; Brown, Lancer ; Valente, Liz J. ; Shen, Shirley ; Deng, Hong-Wen ; Schiller, Martin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-510bb36f084191a0d8c04e2839deb6758dee2d74cb1331d27ec102090249c5013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cell Line</topic><topic>High-throughput assay</topic><topic>HIV Long Terminal Repeat</topic><topic>HIV-1 - genetics</topic><topic>Intragenic epistasis</topic><topic>Mutagenesis</topic><topic>Protein structure</topic><topic>Saturation mutagenesis</topic><topic>Tat</topic><topic>tat Gene Products, Human Immunodeficiency Virus - genetics</topic><topic>tat Gene Products, Human Immunodeficiency Virus - metabolism</topic><topic>Transcription</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benjamin, Ronald</creatorcontrib><creatorcontrib>Giacoletto, Christopher J.</creatorcontrib><creatorcontrib>FitzHugh, Zachary T.</creatorcontrib><creatorcontrib>Eames, Danielle</creatorcontrib><creatorcontrib>Buczek, Lindsay</creatorcontrib><creatorcontrib>Wu, Xiaogang</creatorcontrib><creatorcontrib>Newsome, Jacklyn</creatorcontrib><creatorcontrib>Han, Mira V.</creatorcontrib><creatorcontrib>Pearson, Tony</creatorcontrib><creatorcontrib>Wei, Zhi</creatorcontrib><creatorcontrib>Banerjee, Atoshi</creatorcontrib><creatorcontrib>Brown, Lancer</creatorcontrib><creatorcontrib>Valente, Liz J.</creatorcontrib><creatorcontrib>Shen, Shirley</creatorcontrib><creatorcontrib>Deng, Hong-Wen</creatorcontrib><creatorcontrib>Schiller, Martin R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genomics (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benjamin, Ronald</au><au>Giacoletto, Christopher J.</au><au>FitzHugh, Zachary T.</au><au>Eames, Danielle</au><au>Buczek, Lindsay</au><au>Wu, Xiaogang</au><au>Newsome, Jacklyn</au><au>Han, Mira V.</au><au>Pearson, Tony</au><au>Wei, Zhi</au><au>Banerjee, Atoshi</au><au>Brown, Lancer</au><au>Valente, Liz J.</au><au>Shen, Shirley</au><au>Deng, Hong-Wen</au><au>Schiller, Martin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GigaAssay – An adaptable high-throughput saturation mutagenesis assay platform</atitle><jtitle>Genomics (San Diego, Calif.)</jtitle><addtitle>Genomics</addtitle><date>2022-07</date><risdate>2022</risdate><volume>114</volume><issue>4</issue><spage>110439</spage><epage>110439</epage><pages>110439-110439</pages><artnum>110439</artnum><issn>0888-7543</issn><eissn>1089-8646</eissn><abstract>High-throughput assay systems have had a large impact on understanding the mechanisms of basic cell functions. However, high-throughput assays that directly assess molecular functions are limited. Herein, we describe the “GigaAssay”, a modular high-throughput one-pot assay system for measuring molecular functions of thousands of genetic variants at once. In this system, each cell was infected with one virus from a library encoding thousands of Tat mutant proteins, with each viral particle encoding a random unique molecular identifier (UMI). We demonstrate proof of concept by measuring transcription of a GFP reporter in an engineered reporter cell line driven by binding of the HIV Tat transcription factor to the HIV long terminal repeat. Infected cells were flow-sorted into 3 bins based on their GFP fluorescence readout. The transcriptional activity of each Tat mutant was calculated from the ratio of signals from each bin. The use of UMIs in the GigaAssay produced a high average accuracy (95%) and positive predictive value (98%) determined by comparison to literature benchmark data, known C-terminal truncations, and blinded independent mutant tests. Including the substitution tolerance with structure/function analysis shows restricted substitution types spatially concentrated in the Cys-rich region. Tat has abundant intragenic epistasis (10%) when single and double mutants are compared. [Display omitted] •There is no accurate high-throughput assay to study how mutants impact a gene function•We established an accurate, high-throughput functional assay of transcriptional activity of Tat mutants in human cells•We produced a comprehensive saturating mutagenic landscape of the Tat transcription factor and 1000 s of doubles mutants for intragenic epistasis•Structure / Activity / Tolerance 3D plots expand upon traditional SAR studies•The new GigaAssay should be extensible to the analysis of other functions and genes.•Our characterization of Tat mutants highlights the importance of intergenic epistasis in viral transciption infection and provides a framework for interpretation of Tat mutants and their effect on viral latency.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35905834</pmid><doi>10.1016/j.ygeno.2022.110439</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-7543
ispartof Genomics (San Diego, Calif.), 2022-07, Vol.114 (4), p.110439-110439, Article 110439
issn 0888-7543
1089-8646
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9420302
source MEDLINE; DOAJ Directory of Open Access Journals; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Cell Line
High-throughput assay
HIV Long Terminal Repeat
HIV-1 - genetics
Intragenic epistasis
Mutagenesis
Protein structure
Saturation mutagenesis
Tat
tat Gene Products, Human Immunodeficiency Virus - genetics
tat Gene Products, Human Immunodeficiency Virus - metabolism
Transcription
Transcriptional Activation
title GigaAssay – An adaptable high-throughput saturation mutagenesis assay platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GigaAssay%20%E2%80%93%20An%20adaptable%20high-throughput%20saturation%20mutagenesis%20assay%20platform&rft.jtitle=Genomics%20(San%20Diego,%20Calif.)&rft.au=Benjamin,%20Ronald&rft.date=2022-07&rft.volume=114&rft.issue=4&rft.spage=110439&rft.epage=110439&rft.pages=110439-110439&rft.artnum=110439&rft.issn=0888-7543&rft.eissn=1089-8646&rft_id=info:doi/10.1016/j.ygeno.2022.110439&rft_dat=%3Cpubmed_cross%3E35905834%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35905834&rft_els_id=S0888754322001847&rfr_iscdi=true