Geometric effects of volume-to-surface mapping of fMRI data

In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2022-09, Vol.227 (7), p.2457-2464
Hauptverfasser: Ciantar, Keith George, Farrugia, Christine, Galdi, Paola, Scerri, Kenneth, Xu, Ting, Bajada, Claude J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2464
container_issue 7
container_start_page 2457
container_title Brain Structure and Function
container_volume 227
creator Ciantar, Keith George
Farrugia, Christine
Galdi, Paola
Scerri, Kenneth
Xu, Ting
Bajada, Claude J.
description In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects.
doi_str_mv 10.1007/s00429-022-02536-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9418299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706950204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJaT7aP9CTIZdcnGr0LQKBEJJtIKVQkrPQyqOtF9vaSHag_z7e7JLQHnoYZmCe92WGl5CvQM-BUv2tUCqYrSljc0muavGBHIFRvGZKwcHbLPkhOS5lTam0BuwncsilsRKEPiIXC0w9jrkNFcaIYSxVitVz6qYe6zHVZcrRB6x6v9m0w2q7jD9-3VWNH_1n8jH6ruCXfT8hj7c3D9ff6_ufi7vrq_s6CAljzXUErwMYqZAroJpr5FRxASwGE7ThhjcIxohGSN7owCCgiCpA8Bz1kp-Qy53vZlr22AQcxuw7t8lt7_Mfl3zr_t4M7W-3Ss_OCjDM2tngbG-Q09OEZXR9WwJ2nR8wTcUxZSWzoNgWPf0HXacpD_N7jmk6c5RRMVNsR4WcSskY344B6rbZuF02bs7GvWbjtiK-E5UZHlaY363_o3oBa3yOtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706950204</pqid></control><display><type>article</type><title>Geometric effects of volume-to-surface mapping of fMRI data</title><source>Springer Nature - Complete Springer Journals</source><creator>Ciantar, Keith George ; Farrugia, Christine ; Galdi, Paola ; Scerri, Kenneth ; Xu, Ting ; Bajada, Claude J.</creator><creatorcontrib>Ciantar, Keith George ; Farrugia, Christine ; Galdi, Paola ; Scerri, Kenneth ; Xu, Ting ; Bajada, Claude J.</creatorcontrib><description>In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-022-02536-4</identifier><identifier>PMID: 35895147</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Biomedicine ; Brain mapping ; Cell Biology ; Functional magnetic resonance imaging ; Mapping ; Neighborhoods ; Neural networks ; Neuroimaging ; Neurology ; Neurosciences ; Original ; Original Article</subject><ispartof>Brain Structure and Function, 2022-09, Vol.227 (7), p.2457-2464</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</citedby><cites>FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</cites><orcidid>0000-0001-6138-4851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-022-02536-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-022-02536-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ciantar, Keith George</creatorcontrib><creatorcontrib>Farrugia, Christine</creatorcontrib><creatorcontrib>Galdi, Paola</creatorcontrib><creatorcontrib>Scerri, Kenneth</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Bajada, Claude J.</creatorcontrib><title>Geometric effects of volume-to-surface mapping of fMRI data</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><description>In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects.</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain mapping</subject><subject>Cell Biology</subject><subject>Functional magnetic resonance imaging</subject><subject>Mapping</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Original Article</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVJaT7aP9CTIZdcnGr0LQKBEJJtIKVQkrPQyqOtF9vaSHag_z7e7JLQHnoYZmCe92WGl5CvQM-BUv2tUCqYrSljc0muavGBHIFRvGZKwcHbLPkhOS5lTam0BuwncsilsRKEPiIXC0w9jrkNFcaIYSxVitVz6qYe6zHVZcrRB6x6v9m0w2q7jD9-3VWNH_1n8jH6ruCXfT8hj7c3D9ff6_ufi7vrq_s6CAljzXUErwMYqZAroJpr5FRxASwGE7ThhjcIxohGSN7owCCgiCpA8Bz1kp-Qy53vZlr22AQcxuw7t8lt7_Mfl3zr_t4M7W-3Ss_OCjDM2tngbG-Q09OEZXR9WwJ2nR8wTcUxZSWzoNgWPf0HXacpD_N7jmk6c5RRMVNsR4WcSskY344B6rbZuF02bs7GvWbjtiK-E5UZHlaY363_o3oBa3yOtw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ciantar, Keith George</creator><creator>Farrugia, Christine</creator><creator>Galdi, Paola</creator><creator>Scerri, Kenneth</creator><creator>Xu, Ting</creator><creator>Bajada, Claude J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6138-4851</orcidid></search><sort><creationdate>20220901</creationdate><title>Geometric effects of volume-to-surface mapping of fMRI data</title><author>Ciantar, Keith George ; Farrugia, Christine ; Galdi, Paola ; Scerri, Kenneth ; Xu, Ting ; Bajada, Claude J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain mapping</topic><topic>Cell Biology</topic><topic>Functional magnetic resonance imaging</topic><topic>Mapping</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciantar, Keith George</creatorcontrib><creatorcontrib>Farrugia, Christine</creatorcontrib><creatorcontrib>Galdi, Paola</creatorcontrib><creatorcontrib>Scerri, Kenneth</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Bajada, Claude J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciantar, Keith George</au><au>Farrugia, Christine</au><au>Galdi, Paola</au><au>Scerri, Kenneth</au><au>Xu, Ting</au><au>Bajada, Claude J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric effects of volume-to-surface mapping of fMRI data</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>227</volume><issue>7</issue><spage>2457</spage><epage>2464</epage><pages>2457-2464</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35895147</pmid><doi>10.1007/s00429-022-02536-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6138-4851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2022-09, Vol.227 (7), p.2457-2464
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9418299
source Springer Nature - Complete Springer Journals
subjects Algorithms
Biomedical and Life Sciences
Biomedicine
Brain mapping
Cell Biology
Functional magnetic resonance imaging
Mapping
Neighborhoods
Neural networks
Neuroimaging
Neurology
Neurosciences
Original
Original Article
title Geometric effects of volume-to-surface mapping of fMRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20effects%20of%20volume-to-surface%20mapping%20of%20fMRI%20data&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Ciantar,%20Keith%20George&rft.date=2022-09-01&rft.volume=227&rft.issue=7&rft.spage=2457&rft.epage=2464&rft.pages=2457-2464&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-022-02536-4&rft_dat=%3Cproquest_pubme%3E2706950204%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706950204&rft_id=info:pmid/35895147&rfr_iscdi=true