Geometric effects of volume-to-surface mapping of fMRI data
In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when th...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2022-09, Vol.227 (7), p.2457-2464 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2464 |
---|---|
container_issue | 7 |
container_start_page | 2457 |
container_title | Brain Structure and Function |
container_volume | 227 |
creator | Ciantar, Keith George Farrugia, Christine Galdi, Paola Scerri, Kenneth Xu, Ting Bajada, Claude J. |
description | In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects. |
doi_str_mv | 10.1007/s00429-022-02536-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9418299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706950204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJaT7aP9CTIZdcnGr0LQKBEJJtIKVQkrPQyqOtF9vaSHag_z7e7JLQHnoYZmCe92WGl5CvQM-BUv2tUCqYrSljc0muavGBHIFRvGZKwcHbLPkhOS5lTam0BuwncsilsRKEPiIXC0w9jrkNFcaIYSxVitVz6qYe6zHVZcrRB6x6v9m0w2q7jD9-3VWNH_1n8jH6ruCXfT8hj7c3D9ff6_ufi7vrq_s6CAljzXUErwMYqZAroJpr5FRxASwGE7ThhjcIxohGSN7owCCgiCpA8Bz1kp-Qy53vZlr22AQcxuw7t8lt7_Mfl3zr_t4M7W-3Ss_OCjDM2tngbG-Q09OEZXR9WwJ2nR8wTcUxZSWzoNgWPf0HXacpD_N7jmk6c5RRMVNsR4WcSskY344B6rbZuF02bs7GvWbjtiK-E5UZHlaY363_o3oBa3yOtw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706950204</pqid></control><display><type>article</type><title>Geometric effects of volume-to-surface mapping of fMRI data</title><source>Springer Nature - Complete Springer Journals</source><creator>Ciantar, Keith George ; Farrugia, Christine ; Galdi, Paola ; Scerri, Kenneth ; Xu, Ting ; Bajada, Claude J.</creator><creatorcontrib>Ciantar, Keith George ; Farrugia, Christine ; Galdi, Paola ; Scerri, Kenneth ; Xu, Ting ; Bajada, Claude J.</creatorcontrib><description>In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-022-02536-4</identifier><identifier>PMID: 35895147</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Biomedicine ; Brain mapping ; Cell Biology ; Functional magnetic resonance imaging ; Mapping ; Neighborhoods ; Neural networks ; Neuroimaging ; Neurology ; Neurosciences ; Original ; Original Article</subject><ispartof>Brain Structure and Function, 2022-09, Vol.227 (7), p.2457-2464</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</citedby><cites>FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</cites><orcidid>0000-0001-6138-4851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-022-02536-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-022-02536-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ciantar, Keith George</creatorcontrib><creatorcontrib>Farrugia, Christine</creatorcontrib><creatorcontrib>Galdi, Paola</creatorcontrib><creatorcontrib>Scerri, Kenneth</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Bajada, Claude J.</creatorcontrib><title>Geometric effects of volume-to-surface mapping of fMRI data</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><description>In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects.</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain mapping</subject><subject>Cell Biology</subject><subject>Functional magnetic resonance imaging</subject><subject>Mapping</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Original Article</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVJaT7aP9CTIZdcnGr0LQKBEJJtIKVQkrPQyqOtF9vaSHag_z7e7JLQHnoYZmCe92WGl5CvQM-BUv2tUCqYrSljc0muavGBHIFRvGZKwcHbLPkhOS5lTam0BuwncsilsRKEPiIXC0w9jrkNFcaIYSxVitVz6qYe6zHVZcrRB6x6v9m0w2q7jD9-3VWNH_1n8jH6ruCXfT8hj7c3D9ff6_ufi7vrq_s6CAljzXUErwMYqZAroJpr5FRxASwGE7ThhjcIxohGSN7owCCgiCpA8Bz1kp-Qy53vZlr22AQcxuw7t8lt7_Mfl3zr_t4M7W-3Ss_OCjDM2tngbG-Q09OEZXR9WwJ2nR8wTcUxZSWzoNgWPf0HXacpD_N7jmk6c5RRMVNsR4WcSskY344B6rbZuF02bs7GvWbjtiK-E5UZHlaY363_o3oBa3yOtw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ciantar, Keith George</creator><creator>Farrugia, Christine</creator><creator>Galdi, Paola</creator><creator>Scerri, Kenneth</creator><creator>Xu, Ting</creator><creator>Bajada, Claude J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6138-4851</orcidid></search><sort><creationdate>20220901</creationdate><title>Geometric effects of volume-to-surface mapping of fMRI data</title><author>Ciantar, Keith George ; Farrugia, Christine ; Galdi, Paola ; Scerri, Kenneth ; Xu, Ting ; Bajada, Claude J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-37f1a7c1856e3610737e3063412fc8c78383de1884d453d7c21ce4f6c1ca3e7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain mapping</topic><topic>Cell Biology</topic><topic>Functional magnetic resonance imaging</topic><topic>Mapping</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciantar, Keith George</creatorcontrib><creatorcontrib>Farrugia, Christine</creatorcontrib><creatorcontrib>Galdi, Paola</creatorcontrib><creatorcontrib>Scerri, Kenneth</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Bajada, Claude J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciantar, Keith George</au><au>Farrugia, Christine</au><au>Galdi, Paola</au><au>Scerri, Kenneth</au><au>Xu, Ting</au><au>Bajada, Claude J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric effects of volume-to-surface mapping of fMRI data</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>227</volume><issue>7</issue><spage>2457</spage><epage>2464</epage><pages>2457-2464</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>In this work, we identify a problem with the process of volume-to-surface mapping of functional Magnetic Resonance Imaging (fMRI) data that emerges in local connectivity analysis. We show that neighborhood correlations on the surface of the brain vary spatially with the gyral structure, even when the underlying volumetric data are uncorrelated noise. This could potentially have impacted studies focusing upon local neighborhood connectivity. We explore the effects of this anomaly across varying data resolutions and surface mesh densities, and propose several measures to mitigate these unwanted effects.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35895147</pmid><doi>10.1007/s00429-022-02536-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6138-4851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-2653 |
ispartof | Brain Structure and Function, 2022-09, Vol.227 (7), p.2457-2464 |
issn | 1863-2653 1863-2661 0340-2061 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9418299 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Biomedical and Life Sciences Biomedicine Brain mapping Cell Biology Functional magnetic resonance imaging Mapping Neighborhoods Neural networks Neuroimaging Neurology Neurosciences Original Original Article |
title | Geometric effects of volume-to-surface mapping of fMRI data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20effects%20of%20volume-to-surface%20mapping%20of%20fMRI%20data&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Ciantar,%20Keith%20George&rft.date=2022-09-01&rft.volume=227&rft.issue=7&rft.spage=2457&rft.epage=2464&rft.pages=2457-2464&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-022-02536-4&rft_dat=%3Cproquest_pubme%3E2706950204%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706950204&rft_id=info:pmid/35895147&rfr_iscdi=true |