Wildfire-dependent changes in soil microbiome diversity and function
Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially media...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2022-09, Vol.7 (9), p.1419-1430 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1430 |
---|---|
container_issue | 9 |
container_start_page | 1419 |
container_title | Nature microbiology |
container_volume | 7 |
creator | Nelson, Amelia R. Narrowe, Adrienne B. Rhoades, Charles C. Fegel, Timothy S. Daly, Rebecca A. Roth, Holly K. Chu, Rosalie K. Amundson, Kaela K. Young, Robert B. Steindorff, Andrei S. Mondo, Stephen J. Grigoriev, Igor V. Salamov, Asaf Borch, Thomas Wilkins, Michael J. |
description | Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.
Wildfires have unknown impacts on soil microbes and biogeochemistry. Using metagenomics across forest burn gradients, here the authors show severity-dependent losses in microbiome diversity and functional shifts that underpin post-fire survival. |
doi_str_mv | 10.1038/s41564-022-01203-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9418001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707110032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-983ff50cbfa94517cd463661501a95ffca52157d73327ec53df6516a6846a7e3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoWtQ_4EIGXY_eJJNMZiOIbyi4KbgMaR420iY1mQr990anvjauErjnnnvP_RA6wnCGgYrz3GDGmxoIqQEToPV6C40IMFEz0vLtX_89dJjzCwBgTjgXfBftUQ4gOO5G6PrJz43zydbGLm0wNvSVnqnwbHPlQ5Wjn1cLr1Oc-riwlfFvNmXfrysVTOVWQfc-hgO049Q828PNu48mtzeTq_t6_Hj3cHU5rjUD3NedoM4x0FOnuobhVpuGU85xKaqOOacVI5i1pqWUtFYzahxnmCsuGq5aS_fRxWC7XE0X1uiya1JzuUx-odJaRuXl30rwM_kc32TXYFHiF4OTwSDm3susfW_1TMcQrO4lFoI2FIrodDMlxdeVzb18iasUSi5JWmgxBqCkqMigKqfJOVn3vQYG-QFIDoBkASQ_Acl1aTr-HeC75QtHEdBBkEupMEg_s_-xfQcWaJvy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707110032</pqid></control><display><type>article</type><title>Wildfire-dependent changes in soil microbiome diversity and function</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Nelson, Amelia R. ; Narrowe, Adrienne B. ; Rhoades, Charles C. ; Fegel, Timothy S. ; Daly, Rebecca A. ; Roth, Holly K. ; Chu, Rosalie K. ; Amundson, Kaela K. ; Young, Robert B. ; Steindorff, Andrei S. ; Mondo, Stephen J. ; Grigoriev, Igor V. ; Salamov, Asaf ; Borch, Thomas ; Wilkins, Michael J.</creator><creatorcontrib>Nelson, Amelia R. ; Narrowe, Adrienne B. ; Rhoades, Charles C. ; Fegel, Timothy S. ; Daly, Rebecca A. ; Roth, Holly K. ; Chu, Rosalie K. ; Amundson, Kaela K. ; Young, Robert B. ; Steindorff, Andrei S. ; Mondo, Stephen J. ; Grigoriev, Igor V. ; Salamov, Asaf ; Borch, Thomas ; Wilkins, Michael J. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.
Wildfires have unknown impacts on soil microbes and biogeochemistry. Using metagenomics across forest burn gradients, here the authors show severity-dependent losses in microbiome diversity and functional shifts that underpin post-fire survival.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-022-01203-y</identifier><identifier>PMID: 36008619</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/23 ; 45/91 ; 631/326 ; 631/326/171/1818 ; 631/326/2522 ; 704/158/855 ; 704/47 ; applied microbiology ; BASIC BIOLOGICAL SCIENCES ; Biogeochemistry ; Biomedical and Life Sciences ; Carbon ; Carbon cycle ; Climate change ; Coniferous forests ; Ecosystem recovery ; Ectomycorrhizas ; Forests ; Genomes ; Heat resistance ; Infectious Diseases ; Life Sciences ; Medical Microbiology ; Metagenomics ; microbial ecology ; Microbiology ; Microbiomes ; Microbiota ; Parasitology ; Rhizosphere ; Soil ; soil microbiology ; Soil microorganisms ; Survival ; Virology ; Wildfires</subject><ispartof>Nature microbiology, 2022-09, Vol.7 (9), p.1419-1430</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-983ff50cbfa94517cd463661501a95ffca52157d73327ec53df6516a6846a7e3</citedby><cites>FETCH-LOGICAL-c501t-983ff50cbfa94517cd463661501a95ffca52157d73327ec53df6516a6846a7e3</cites><orcidid>0000-0002-3136-8903 ; 0000-0003-1759-6587 ; 0000-0001-7428-7647 ; 0000-0002-4251-1613 ; 0000-0002-2052-2848 ; 0000-0001-7485-0604 ; 0000-0002-3595-0853 ; 0000-0003-2223-7458 ; 0000-0001-5797-0647 ; 0000000322237458 ; 0000000157970647 ; 0000000242511613 ; 0000000317596587 ; 0000000174287647 ; 0000000220522848 ; 0000000235950853 ; 0000000231368903 ; 0000000174850604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36008619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1883430$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, Amelia R.</creatorcontrib><creatorcontrib>Narrowe, Adrienne B.</creatorcontrib><creatorcontrib>Rhoades, Charles C.</creatorcontrib><creatorcontrib>Fegel, Timothy S.</creatorcontrib><creatorcontrib>Daly, Rebecca A.</creatorcontrib><creatorcontrib>Roth, Holly K.</creatorcontrib><creatorcontrib>Chu, Rosalie K.</creatorcontrib><creatorcontrib>Amundson, Kaela K.</creatorcontrib><creatorcontrib>Young, Robert B.</creatorcontrib><creatorcontrib>Steindorff, Andrei S.</creatorcontrib><creatorcontrib>Mondo, Stephen J.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Salamov, Asaf</creatorcontrib><creatorcontrib>Borch, Thomas</creatorcontrib><creatorcontrib>Wilkins, Michael J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Wildfire-dependent changes in soil microbiome diversity and function</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.
Wildfires have unknown impacts on soil microbes and biogeochemistry. Using metagenomics across forest burn gradients, here the authors show severity-dependent losses in microbiome diversity and functional shifts that underpin post-fire survival.</description><subject>45</subject><subject>45/23</subject><subject>45/91</subject><subject>631/326</subject><subject>631/326/171/1818</subject><subject>631/326/2522</subject><subject>704/158/855</subject><subject>704/47</subject><subject>applied microbiology</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biogeochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Climate change</subject><subject>Coniferous forests</subject><subject>Ecosystem recovery</subject><subject>Ectomycorrhizas</subject><subject>Forests</subject><subject>Genomes</subject><subject>Heat resistance</subject><subject>Infectious Diseases</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Metagenomics</subject><subject>microbial ecology</subject><subject>Microbiology</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Parasitology</subject><subject>Rhizosphere</subject><subject>Soil</subject><subject>soil microbiology</subject><subject>Soil microorganisms</subject><subject>Survival</subject><subject>Virology</subject><subject>Wildfires</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoWtQ_4EIGXY_eJJNMZiOIbyi4KbgMaR420iY1mQr990anvjauErjnnnvP_RA6wnCGgYrz3GDGmxoIqQEToPV6C40IMFEz0vLtX_89dJjzCwBgTjgXfBftUQ4gOO5G6PrJz43zydbGLm0wNvSVnqnwbHPlQ5Wjn1cLr1Oc-riwlfFvNmXfrysVTOVWQfc-hgO049Q828PNu48mtzeTq_t6_Hj3cHU5rjUD3NedoM4x0FOnuobhVpuGU85xKaqOOacVI5i1pqWUtFYzahxnmCsuGq5aS_fRxWC7XE0X1uiya1JzuUx-odJaRuXl30rwM_kc32TXYFHiF4OTwSDm3susfW_1TMcQrO4lFoI2FIrodDMlxdeVzb18iasUSi5JWmgxBqCkqMigKqfJOVn3vQYG-QFIDoBkASQ_Acl1aTr-HeC75QtHEdBBkEupMEg_s_-xfQcWaJvy</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Nelson, Amelia R.</creator><creator>Narrowe, Adrienne B.</creator><creator>Rhoades, Charles C.</creator><creator>Fegel, Timothy S.</creator><creator>Daly, Rebecca A.</creator><creator>Roth, Holly K.</creator><creator>Chu, Rosalie K.</creator><creator>Amundson, Kaela K.</creator><creator>Young, Robert B.</creator><creator>Steindorff, Andrei S.</creator><creator>Mondo, Stephen J.</creator><creator>Grigoriev, Igor V.</creator><creator>Salamov, Asaf</creator><creator>Borch, Thomas</creator><creator>Wilkins, Michael J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0003-1759-6587</orcidid><orcidid>https://orcid.org/0000-0001-7428-7647</orcidid><orcidid>https://orcid.org/0000-0002-4251-1613</orcidid><orcidid>https://orcid.org/0000-0002-2052-2848</orcidid><orcidid>https://orcid.org/0000-0001-7485-0604</orcidid><orcidid>https://orcid.org/0000-0002-3595-0853</orcidid><orcidid>https://orcid.org/0000-0003-2223-7458</orcidid><orcidid>https://orcid.org/0000-0001-5797-0647</orcidid><orcidid>https://orcid.org/0000000322237458</orcidid><orcidid>https://orcid.org/0000000157970647</orcidid><orcidid>https://orcid.org/0000000242511613</orcidid><orcidid>https://orcid.org/0000000317596587</orcidid><orcidid>https://orcid.org/0000000174287647</orcidid><orcidid>https://orcid.org/0000000220522848</orcidid><orcidid>https://orcid.org/0000000235950853</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000174850604</orcidid></search><sort><creationdate>20220901</creationdate><title>Wildfire-dependent changes in soil microbiome diversity and function</title><author>Nelson, Amelia R. ; Narrowe, Adrienne B. ; Rhoades, Charles C. ; Fegel, Timothy S. ; Daly, Rebecca A. ; Roth, Holly K. ; Chu, Rosalie K. ; Amundson, Kaela K. ; Young, Robert B. ; Steindorff, Andrei S. ; Mondo, Stephen J. ; Grigoriev, Igor V. ; Salamov, Asaf ; Borch, Thomas ; Wilkins, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-983ff50cbfa94517cd463661501a95ffca52157d73327ec53df6516a6846a7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>45</topic><topic>45/23</topic><topic>45/91</topic><topic>631/326</topic><topic>631/326/171/1818</topic><topic>631/326/2522</topic><topic>704/158/855</topic><topic>704/47</topic><topic>applied microbiology</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biogeochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Climate change</topic><topic>Coniferous forests</topic><topic>Ecosystem recovery</topic><topic>Ectomycorrhizas</topic><topic>Forests</topic><topic>Genomes</topic><topic>Heat resistance</topic><topic>Infectious Diseases</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Metagenomics</topic><topic>microbial ecology</topic><topic>Microbiology</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Parasitology</topic><topic>Rhizosphere</topic><topic>Soil</topic><topic>soil microbiology</topic><topic>Soil microorganisms</topic><topic>Survival</topic><topic>Virology</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, Amelia R.</creatorcontrib><creatorcontrib>Narrowe, Adrienne B.</creatorcontrib><creatorcontrib>Rhoades, Charles C.</creatorcontrib><creatorcontrib>Fegel, Timothy S.</creatorcontrib><creatorcontrib>Daly, Rebecca A.</creatorcontrib><creatorcontrib>Roth, Holly K.</creatorcontrib><creatorcontrib>Chu, Rosalie K.</creatorcontrib><creatorcontrib>Amundson, Kaela K.</creatorcontrib><creatorcontrib>Young, Robert B.</creatorcontrib><creatorcontrib>Steindorff, Andrei S.</creatorcontrib><creatorcontrib>Mondo, Stephen J.</creatorcontrib><creatorcontrib>Grigoriev, Igor V.</creatorcontrib><creatorcontrib>Salamov, Asaf</creatorcontrib><creatorcontrib>Borch, Thomas</creatorcontrib><creatorcontrib>Wilkins, Michael J.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, Amelia R.</au><au>Narrowe, Adrienne B.</au><au>Rhoades, Charles C.</au><au>Fegel, Timothy S.</au><au>Daly, Rebecca A.</au><au>Roth, Holly K.</au><au>Chu, Rosalie K.</au><au>Amundson, Kaela K.</au><au>Young, Robert B.</au><au>Steindorff, Andrei S.</au><au>Mondo, Stephen J.</au><au>Grigoriev, Igor V.</au><au>Salamov, Asaf</au><au>Borch, Thomas</au><au>Wilkins, Michael J.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wildfire-dependent changes in soil microbiome diversity and function</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>7</volume><issue>9</issue><spage>1419</spage><epage>1430</epage><pages>1419-1430</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Forest soil microbiomes have crucial roles in carbon storage, biogeochemical cycling and rhizosphere processes. Wildfire season length, and the frequency and size of severe fires have increased owing to climate change. Fires affect ecosystem recovery and modify soil microbiomes and microbially mediated biogeochemical processes. To study wildfire-dependent changes in soil microbiomes, we characterized functional shifts in the soil microbiota (bacteria, fungi and viruses) across burn severity gradients (low, moderate and high severity) 1 yr post fire in coniferous forests in Colorado and Wyoming, USA. We found severity-dependent increases of Actinobacteria encoding genes for heat resistance, fast growth, and pyrogenic carbon utilization that might enhance post-fire survival. We report that increased burn severity led to the loss of ectomycorrhizal fungi and less tolerant microbial taxa. Viruses remained active in post-fire soils and probably influenced carbon cycling and biogeochemistry via turnover of biomass and ecosystem-relevant auxiliary metabolic genes. Our genome-resolved analyses link post-fire soil microbial taxonomy to functions and reveal the complexity of post-fire soil microbiome activity.
Wildfires have unknown impacts on soil microbes and biogeochemistry. Using metagenomics across forest burn gradients, here the authors show severity-dependent losses in microbiome diversity and functional shifts that underpin post-fire survival.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36008619</pmid><doi>10.1038/s41564-022-01203-y</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3136-8903</orcidid><orcidid>https://orcid.org/0000-0003-1759-6587</orcidid><orcidid>https://orcid.org/0000-0001-7428-7647</orcidid><orcidid>https://orcid.org/0000-0002-4251-1613</orcidid><orcidid>https://orcid.org/0000-0002-2052-2848</orcidid><orcidid>https://orcid.org/0000-0001-7485-0604</orcidid><orcidid>https://orcid.org/0000-0002-3595-0853</orcidid><orcidid>https://orcid.org/0000-0003-2223-7458</orcidid><orcidid>https://orcid.org/0000-0001-5797-0647</orcidid><orcidid>https://orcid.org/0000000322237458</orcidid><orcidid>https://orcid.org/0000000157970647</orcidid><orcidid>https://orcid.org/0000000242511613</orcidid><orcidid>https://orcid.org/0000000317596587</orcidid><orcidid>https://orcid.org/0000000174287647</orcidid><orcidid>https://orcid.org/0000000220522848</orcidid><orcidid>https://orcid.org/0000000235950853</orcidid><orcidid>https://orcid.org/0000000231368903</orcidid><orcidid>https://orcid.org/0000000174850604</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2022-09, Vol.7 (9), p.1419-1430 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9418001 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | 45 45/23 45/91 631/326 631/326/171/1818 631/326/2522 704/158/855 704/47 applied microbiology BASIC BIOLOGICAL SCIENCES Biogeochemistry Biomedical and Life Sciences Carbon Carbon cycle Climate change Coniferous forests Ecosystem recovery Ectomycorrhizas Forests Genomes Heat resistance Infectious Diseases Life Sciences Medical Microbiology Metagenomics microbial ecology Microbiology Microbiomes Microbiota Parasitology Rhizosphere Soil soil microbiology Soil microorganisms Survival Virology Wildfires |
title | Wildfire-dependent changes in soil microbiome diversity and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wildfire-dependent%20changes%20in%20soil%20microbiome%20diversity%20and%20function&rft.jtitle=Nature%20microbiology&rft.au=Nelson,%20Amelia%20R.&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2022-09-01&rft.volume=7&rft.issue=9&rft.spage=1419&rft.epage=1430&rft.pages=1419-1430&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-022-01203-y&rft_dat=%3Cproquest_pubme%3E2707110032%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707110032&rft_id=info:pmid/36008619&rfr_iscdi=true |