Improved Voigt and Reuss Formulas with the Poisson Effect

The Poisson effect, measured by the Poisson’s ratio, plays an important role in the regulation of the elastic properties of composite materials, but it is not considered in the conventional Voigt (iso-strain) and Reuss (iso-stress) formulas, which explains why the formulas are inaccurate even if the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-08, Vol.15 (16), p.5656
1. Verfasser: Luo, Yunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 5656
container_title Materials
container_volume 15
creator Luo, Yunhua
description The Poisson effect, measured by the Poisson’s ratio, plays an important role in the regulation of the elastic properties of composite materials, but it is not considered in the conventional Voigt (iso-strain) and Reuss (iso-stress) formulas, which explains why the formulas are inaccurate even if the iso-strain or the iso-stress conditions are satisfied. To consider the Poisson effect, we derived a set of new formulas based on the governing equations of elasticity. The obtained formulas show greater mathematical complexity. To further understand how the Poisson effect influences composite elastic properties, two types of finite element models (FEM) were constructed to simulate the situations where the Poisson effect does or does not have an influence. The results show that the conventional Voigt and Reuss formulas are special cases of the newly derived ones. The Poisson effect induces secondary strains and stresses into the phase materials, which demands more strain energy to achieve the same deformation in the primary (loading) direction, and thus increases composite stiffness; the magnitude of the increase is dependent on the contrast of phase properties. The findings may have significant impact on the study of the emerging nanocomposites and functionally graded materials, where the conventional Voigt and Reuss formulas have wide applications.
doi_str_mv 10.3390/ma15165656
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9413398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745739348</galeid><sourcerecordid>A745739348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5be9a7053bd42eba4395ea46b23901481d189d666e83393405a56e2f77a82b4e3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMobszd-AsK3oiw2TRfzY0wxqaDgSLqbUjb0y2jbWbSTvz3Zmz4lXORkLznyftyELrE8ZgQGd_WGjPMWagT1MdS8hGWlJ7-OvfQ0PtNHBYhOE3kOeoRHmMipOwjuai3zu6giN6sWbWRboroGTrvo7l1dVdpH32Ydh21a4ierPHeNtGsLCFvL9BZqSsPw-M-QK_z2cv0YbR8vF9MJ8tRTljSjlgGUouYkaygCWSaEslAU54lwT2mKS5wKgvOOaQhD6Ex04xDUgqh0ySjQAbo7sDddlkNRQ5N63Slts7U2n0qq436-9KYtVrZnZIUB2IaANdHgLPvHfhW1cbnUFW6Adt5lYhYpERQIYP06p90YzvXhHh7FU9EigNzgMYH1UpXoExT2vBvHqqA2uS2gdKE-4mgTOwT7R3cHBpyZ713UH67x7HaT1H9TJF8ASbZi2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706278113</pqid></control><display><type>article</type><title>Improved Voigt and Reuss Formulas with the Poisson Effect</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Luo, Yunhua</creator><creatorcontrib>Luo, Yunhua</creatorcontrib><description>The Poisson effect, measured by the Poisson’s ratio, plays an important role in the regulation of the elastic properties of composite materials, but it is not considered in the conventional Voigt (iso-strain) and Reuss (iso-stress) formulas, which explains why the formulas are inaccurate even if the iso-strain or the iso-stress conditions are satisfied. To consider the Poisson effect, we derived a set of new formulas based on the governing equations of elasticity. The obtained formulas show greater mathematical complexity. To further understand how the Poisson effect influences composite elastic properties, two types of finite element models (FEM) were constructed to simulate the situations where the Poisson effect does or does not have an influence. The results show that the conventional Voigt and Reuss formulas are special cases of the newly derived ones. The Poisson effect induces secondary strains and stresses into the phase materials, which demands more strain energy to achieve the same deformation in the primary (loading) direction, and thus increases composite stiffness; the magnitude of the increase is dependent on the contrast of phase properties. The findings may have significant impact on the study of the emerging nanocomposites and functionally graded materials, where the conventional Voigt and Reuss formulas have wide applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15165656</identifier><identifier>PMID: 36013799</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Boundary conditions ; Deformation ; Elastic properties ; Finite element method ; Functionally gradient materials ; Influence ; Interfaces ; Investigations ; Nanocomposites ; Poisson's ratio ; Ratios ; Stiffness ; Strain</subject><ispartof>Materials, 2022-08, Vol.15 (16), p.5656</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the author. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5be9a7053bd42eba4395ea46b23901481d189d666e83393405a56e2f77a82b4e3</citedby><cites>FETCH-LOGICAL-c352t-5be9a7053bd42eba4395ea46b23901481d189d666e83393405a56e2f77a82b4e3</cites><orcidid>0000-0003-0271-1319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413398/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413398/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Luo, Yunhua</creatorcontrib><title>Improved Voigt and Reuss Formulas with the Poisson Effect</title><title>Materials</title><description>The Poisson effect, measured by the Poisson’s ratio, plays an important role in the regulation of the elastic properties of composite materials, but it is not considered in the conventional Voigt (iso-strain) and Reuss (iso-stress) formulas, which explains why the formulas are inaccurate even if the iso-strain or the iso-stress conditions are satisfied. To consider the Poisson effect, we derived a set of new formulas based on the governing equations of elasticity. The obtained formulas show greater mathematical complexity. To further understand how the Poisson effect influences composite elastic properties, two types of finite element models (FEM) were constructed to simulate the situations where the Poisson effect does or does not have an influence. The results show that the conventional Voigt and Reuss formulas are special cases of the newly derived ones. The Poisson effect induces secondary strains and stresses into the phase materials, which demands more strain energy to achieve the same deformation in the primary (loading) direction, and thus increases composite stiffness; the magnitude of the increase is dependent on the contrast of phase properties. The findings may have significant impact on the study of the emerging nanocomposites and functionally graded materials, where the conventional Voigt and Reuss formulas have wide applications.</description><subject>Boundary conditions</subject><subject>Deformation</subject><subject>Elastic properties</subject><subject>Finite element method</subject><subject>Functionally gradient materials</subject><subject>Influence</subject><subject>Interfaces</subject><subject>Investigations</subject><subject>Nanocomposites</subject><subject>Poisson's ratio</subject><subject>Ratios</subject><subject>Stiffness</subject><subject>Strain</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LwzAUhoMobszd-AsK3oiw2TRfzY0wxqaDgSLqbUjb0y2jbWbSTvz3Zmz4lXORkLznyftyELrE8ZgQGd_WGjPMWagT1MdS8hGWlJ7-OvfQ0PtNHBYhOE3kOeoRHmMipOwjuai3zu6giN6sWbWRboroGTrvo7l1dVdpH32Ydh21a4ierPHeNtGsLCFvL9BZqSsPw-M-QK_z2cv0YbR8vF9MJ8tRTljSjlgGUouYkaygCWSaEslAU54lwT2mKS5wKgvOOaQhD6Ex04xDUgqh0ySjQAbo7sDddlkNRQ5N63Slts7U2n0qq436-9KYtVrZnZIUB2IaANdHgLPvHfhW1cbnUFW6Adt5lYhYpERQIYP06p90YzvXhHh7FU9EigNzgMYH1UpXoExT2vBvHqqA2uS2gdKE-4mgTOwT7R3cHBpyZ713UH67x7HaT1H9TJF8ASbZi2Q</recordid><startdate>20220817</startdate><enddate>20220817</enddate><creator>Luo, Yunhua</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0271-1319</orcidid></search><sort><creationdate>20220817</creationdate><title>Improved Voigt and Reuss Formulas with the Poisson Effect</title><author>Luo, Yunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5be9a7053bd42eba4395ea46b23901481d189d666e83393405a56e2f77a82b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Deformation</topic><topic>Elastic properties</topic><topic>Finite element method</topic><topic>Functionally gradient materials</topic><topic>Influence</topic><topic>Interfaces</topic><topic>Investigations</topic><topic>Nanocomposites</topic><topic>Poisson's ratio</topic><topic>Ratios</topic><topic>Stiffness</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yunhua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Voigt and Reuss Formulas with the Poisson Effect</atitle><jtitle>Materials</jtitle><date>2022-08-17</date><risdate>2022</risdate><volume>15</volume><issue>16</issue><spage>5656</spage><pages>5656-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The Poisson effect, measured by the Poisson’s ratio, plays an important role in the regulation of the elastic properties of composite materials, but it is not considered in the conventional Voigt (iso-strain) and Reuss (iso-stress) formulas, which explains why the formulas are inaccurate even if the iso-strain or the iso-stress conditions are satisfied. To consider the Poisson effect, we derived a set of new formulas based on the governing equations of elasticity. The obtained formulas show greater mathematical complexity. To further understand how the Poisson effect influences composite elastic properties, two types of finite element models (FEM) were constructed to simulate the situations where the Poisson effect does or does not have an influence. The results show that the conventional Voigt and Reuss formulas are special cases of the newly derived ones. The Poisson effect induces secondary strains and stresses into the phase materials, which demands more strain energy to achieve the same deformation in the primary (loading) direction, and thus increases composite stiffness; the magnitude of the increase is dependent on the contrast of phase properties. The findings may have significant impact on the study of the emerging nanocomposites and functionally graded materials, where the conventional Voigt and Reuss formulas have wide applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36013799</pmid><doi>10.3390/ma15165656</doi><orcidid>https://orcid.org/0000-0003-0271-1319</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-08, Vol.15 (16), p.5656
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9413398
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Boundary conditions
Deformation
Elastic properties
Finite element method
Functionally gradient materials
Influence
Interfaces
Investigations
Nanocomposites
Poisson's ratio
Ratios
Stiffness
Strain
title Improved Voigt and Reuss Formulas with the Poisson Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Voigt%20and%20Reuss%20Formulas%20with%20the%20Poisson%20Effect&rft.jtitle=Materials&rft.au=Luo,%20Yunhua&rft.date=2022-08-17&rft.volume=15&rft.issue=16&rft.spage=5656&rft.pages=5656-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15165656&rft_dat=%3Cgale_pubme%3EA745739348%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706278113&rft_id=info:pmid/36013799&rft_galeid=A745739348&rfr_iscdi=true