On the Mechanical Properties of Hybrid Dental Materials for CAD/CAM Restorations

Two hybrid dental materials available for computer-aided design and manufacturing (CAD/CAM) dental restorations have been selected to explore their potential. On the one hand, the scarcely investigated polymer-based material Vita Enamic® (VE) and, on the other hand, the leucite-based material IPS Em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-08, Vol.14 (16), p.3252
Hauptverfasser: Palacios, Teresa, Tarancón, Sandra, Pastor, José Ygnacio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two hybrid dental materials available for computer-aided design and manufacturing (CAD/CAM) dental restorations have been selected to explore their potential. On the one hand, the scarcely investigated polymer-based material Vita Enamic® (VE) and, on the other hand, the leucite-based material IPS Empress® CAD (EC). Their micro-structure and mechanical performance were analyzed in two environments: directly as received by the manufacturer (AR), and after immersion and storage in artificial saliva (AS) for 30 days to determine the influence of the saliva effect. To avoid an inappropriate selection of materials for clinical use, a full understanding of their mechanical behavior is essential. Therefore, this investigation aims to determine the micro-structural and chemical composition by field emission scanning electron microscopy (FE-SEM) and X-ray fluorescence analysis, establishing the density, micro- and nano-hardness, the nano-elastic modulus, and the flexural strength and fracture toughness (by introducing a femto-laser notch to replicate a real crack). In addition, fracture surfaces of the broken samples were analyzed to correlate the failure micro-mechanisms with their mechanical properties. Results indicate that while the crystalline phase of the materials is very similar (composed of SiO2 and Al2O3), the micro-structure and mechanical behavior is not. The material EC, with finer micro-structure, exhibits a higher mechanical performance but with greater variability of results. Furthermore, the material VE, with a 25 vol.% polymer phase, shows a mechanical performance similar to enamel and dentin and therefore more similar to human behavior.
ISSN:2073-4360
2073-4360
DOI:10.3390/polym14163252