Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues

Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-08, Vol.23 (16), p.8868
Hauptverfasser: Kobayashi, Mako, Ishida, Naoki, Hashimoto, Yoshihide, Negishi, Jun, Saga, Hideki, Sasaki, Yoshihiro, Akiyoshi, Kazunari, Kimura, Tsuyoshi, Kishida, Akio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 8868
container_title International journal of molecular sciences
container_volume 23
creator Kobayashi, Mako
Ishida, Naoki
Hashimoto, Yoshihide
Negishi, Jun
Saga, Hideki
Sasaki, Yoshihiro
Akiyoshi, Kazunari
Kimura, Tsuyoshi
Kishida, Akio
description Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.
doi_str_mv 10.3390/ijms23168868
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2706227954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-b7e2470ea0ea0eed9efeac5e620b386a11a574f6e02b9252b44de403df6061313</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi3UCijl1h9gqRcqNcVfsZNLpS5dWCRoewCuluNMFq-cGOxkBT30t9cLCAHSSDPyPPNqXg9Cnyj5xnlNDt2qT4xTWVWy2kK7VDBWECLVuxf1DvqQ0ooQxllZb6MdLglllMld9G9-N0ZjRxcGbIYWz1zwYems8Xi-Nn4yD53Q4XMzRndXzMKUqV9mCGtIznpI-OB8dpW-4C6GHi_c8rpY3LcxpDGPWvwnQkpThOInWPB-8ia6v9DiC5efIX1E7zvjE-w_5T10eTy_OFoUZ79PTo9-nBVWlOVYNAqYUATMQ0BbQwfGliAZaXglDaWmVKKTQFhTs5I1QrQgCG87SSTllO-h74-6N1PTQ2thyK69vomuN_FeB-P0687grvUyrHUtiKqYygIHTwIx3ObFR927tHFkBghT0kwRJUlVC5bRz2_QVZjikO1tKMmYqkuRqa-PlM1_lSJ0z8tQojeH1S8Py_8D6vuXkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706227954</pqid></control><display><type>article</type><title>Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kobayashi, Mako ; Ishida, Naoki ; Hashimoto, Yoshihide ; Negishi, Jun ; Saga, Hideki ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Kimura, Tsuyoshi ; Kishida, Akio</creator><creatorcontrib>Kobayashi, Mako ; Ishida, Naoki ; Hashimoto, Yoshihide ; Negishi, Jun ; Saga, Hideki ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Kimura, Tsuyoshi ; Kishida, Akio</creatorcontrib><description>Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23168868</identifier><identifier>PMID: 36012126</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biocompatibility ; Biological activity ; Cell growth ; Cell proliferation ; Endothelial cells ; Extracellular matrix ; Growth factors ; Hydrostatic pressure ; In vivo methods and tests ; Liver ; Methods ; Nanoparticles ; Particle size ; Regeneration (physiology) ; Regenerative medicine ; Surfactants ; Tissue engineering ; Transmission electron microscopy ; Urinary bladder</subject><ispartof>International journal of molecular sciences, 2022-08, Vol.23 (16), p.8868</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-b7e2470ea0ea0eed9efeac5e620b386a11a574f6e02b9252b44de403df6061313</citedby><cites>FETCH-LOGICAL-c455t-b7e2470ea0ea0eed9efeac5e620b386a11a574f6e02b9252b44de403df6061313</cites><orcidid>0000-0003-0537-8291 ; 0000-0003-0476-0624 ; 0000-0002-2434-3564 ; 0000-0002-2413-5810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids></links><search><creatorcontrib>Kobayashi, Mako</creatorcontrib><creatorcontrib>Ishida, Naoki</creatorcontrib><creatorcontrib>Hashimoto, Yoshihide</creatorcontrib><creatorcontrib>Negishi, Jun</creatorcontrib><creatorcontrib>Saga, Hideki</creatorcontrib><creatorcontrib>Sasaki, Yoshihiro</creatorcontrib><creatorcontrib>Akiyoshi, Kazunari</creatorcontrib><creatorcontrib>Kimura, Tsuyoshi</creatorcontrib><creatorcontrib>Kishida, Akio</creatorcontrib><title>Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues</title><title>International journal of molecular sciences</title><description>Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.</description><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Endothelial cells</subject><subject>Extracellular matrix</subject><subject>Growth factors</subject><subject>Hydrostatic pressure</subject><subject>In vivo methods and tests</subject><subject>Liver</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Regeneration (physiology)</subject><subject>Regenerative medicine</subject><subject>Surfactants</subject><subject>Tissue engineering</subject><subject>Transmission electron microscopy</subject><subject>Urinary bladder</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkU1P3DAQhi3UCijl1h9gqRcqNcVfsZNLpS5dWCRoewCuluNMFq-cGOxkBT30t9cLCAHSSDPyPPNqXg9Cnyj5xnlNDt2qT4xTWVWy2kK7VDBWECLVuxf1DvqQ0ooQxllZb6MdLglllMld9G9-N0ZjRxcGbIYWz1zwYems8Xi-Nn4yD53Q4XMzRndXzMKUqV9mCGtIznpI-OB8dpW-4C6GHi_c8rpY3LcxpDGPWvwnQkpThOInWPB-8ia6v9DiC5efIX1E7zvjE-w_5T10eTy_OFoUZ79PTo9-nBVWlOVYNAqYUATMQ0BbQwfGliAZaXglDaWmVKKTQFhTs5I1QrQgCG87SSTllO-h74-6N1PTQ2thyK69vomuN_FeB-P0687grvUyrHUtiKqYygIHTwIx3ObFR927tHFkBghT0kwRJUlVC5bRz2_QVZjikO1tKMmYqkuRqa-PlM1_lSJ0z8tQojeH1S8Py_8D6vuXkQ</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>Kobayashi, Mako</creator><creator>Ishida, Naoki</creator><creator>Hashimoto, Yoshihide</creator><creator>Negishi, Jun</creator><creator>Saga, Hideki</creator><creator>Sasaki, Yoshihiro</creator><creator>Akiyoshi, Kazunari</creator><creator>Kimura, Tsuyoshi</creator><creator>Kishida, Akio</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0537-8291</orcidid><orcidid>https://orcid.org/0000-0003-0476-0624</orcidid><orcidid>https://orcid.org/0000-0002-2434-3564</orcidid><orcidid>https://orcid.org/0000-0002-2413-5810</orcidid></search><sort><creationdate>20220809</creationdate><title>Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues</title><author>Kobayashi, Mako ; Ishida, Naoki ; Hashimoto, Yoshihide ; Negishi, Jun ; Saga, Hideki ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Kimura, Tsuyoshi ; Kishida, Akio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-b7e2470ea0ea0eed9efeac5e620b386a11a574f6e02b9252b44de403df6061313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Endothelial cells</topic><topic>Extracellular matrix</topic><topic>Growth factors</topic><topic>Hydrostatic pressure</topic><topic>In vivo methods and tests</topic><topic>Liver</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Regeneration (physiology)</topic><topic>Regenerative medicine</topic><topic>Surfactants</topic><topic>Tissue engineering</topic><topic>Transmission electron microscopy</topic><topic>Urinary bladder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Mako</creatorcontrib><creatorcontrib>Ishida, Naoki</creatorcontrib><creatorcontrib>Hashimoto, Yoshihide</creatorcontrib><creatorcontrib>Negishi, Jun</creatorcontrib><creatorcontrib>Saga, Hideki</creatorcontrib><creatorcontrib>Sasaki, Yoshihiro</creatorcontrib><creatorcontrib>Akiyoshi, Kazunari</creatorcontrib><creatorcontrib>Kimura, Tsuyoshi</creatorcontrib><creatorcontrib>Kishida, Akio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Mako</au><au>Ishida, Naoki</au><au>Hashimoto, Yoshihide</au><au>Negishi, Jun</au><au>Saga, Hideki</au><au>Sasaki, Yoshihiro</au><au>Akiyoshi, Kazunari</au><au>Kimura, Tsuyoshi</au><au>Kishida, Akio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-08-09</date><risdate>2022</risdate><volume>23</volume><issue>16</issue><spage>8868</spage><pages>8868-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36012126</pmid><doi>10.3390/ijms23168868</doi><orcidid>https://orcid.org/0000-0003-0537-8291</orcidid><orcidid>https://orcid.org/0000-0003-0476-0624</orcidid><orcidid>https://orcid.org/0000-0002-2434-3564</orcidid><orcidid>https://orcid.org/0000-0002-2413-5810</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-08, Vol.23 (16), p.8868
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407827
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biocompatibility
Biological activity
Cell growth
Cell proliferation
Endothelial cells
Extracellular matrix
Growth factors
Hydrostatic pressure
In vivo methods and tests
Liver
Methods
Nanoparticles
Particle size
Regeneration (physiology)
Regenerative medicine
Surfactants
Tissue engineering
Transmission electron microscopy
Urinary bladder
title Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extraction%20and%20Biological%20Evaluation%20of%20Matrix-Bound%20Nanovesicles%20(MBVs)%20from%20High-Hydrostatic%20Pressure-Decellularized%20Tissues&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Kobayashi,%20Mako&rft.date=2022-08-09&rft.volume=23&rft.issue=16&rft.spage=8868&rft.pages=8868-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23168868&rft_dat=%3Cproquest_pubme%3E2706227954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706227954&rft_id=info:pmid/36012126&rfr_iscdi=true