Fluorescent Platforms for RNA Chemical Biology Research

Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2022-07, Vol.13 (8), p.1348
Hauptverfasser: Du, Jinxi, Dartawan, Ricky, Rice, William, Gao, Forrest, Zhou, Joseph H, Sheng, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 1348
container_title Genes
container_volume 13
creator Du, Jinxi
Dartawan, Ricky
Rice, William
Gao, Forrest
Zhou, Joseph H
Sheng, Jia
description Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.
doi_str_mv 10.3390/genes13081348
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745723400</galeid><sourcerecordid>A745723400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</originalsourceid><addsrcrecordid>eNptkd9LHDEQx4NUqqiPfS0LvvRldbL5tXkpXI9aBVER-xxyucndSnajyW3B_75ZtOoVE8iE5DPfZOZLyBcKJ4xpOF3hgJkyaCnj7Q7Zb0CxmvNGfHq33yNHOd9DGRwaAPGZ7DEJlDZC7xN1FsaYMDscNtVNsBsfU5-rsla3V7Nqvsa-czZUP7oY4uqpusWMNrn1Idn1NmQ8eokH5PfZz7v5eX15_etiPrusHW-bTd0K77jUgoP0TlmmFDZOylaBRqb1QkrrYKkFc8ix9W3rF1LDUkm1UA40ZQfk-7Puw7jocTl9M9lgHlLX2_Rkou3M9s3Qrc0q_jGag-KKF4FvLwIpPo6YN6bvSrUh2AHjmE2jQEkQgrKCHv-H3scxDaW8iZJUaxDqjVrZgKYbfCzvuknUzBQXqmEcoFAnH1BlLqeGxgF9V863EurnBJdizgn9a40UzGS22TK78F_fN-aV_mct-wuciaJO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706199057</pqid></control><display><type>article</type><title>Fluorescent Platforms for RNA Chemical Biology Research</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Du, Jinxi ; Dartawan, Ricky ; Rice, William ; Gao, Forrest ; Zhou, Joseph H ; Sheng, Jia</creator><creatorcontrib>Du, Jinxi ; Dartawan, Ricky ; Rice, William ; Gao, Forrest ; Zhou, Joseph H ; Sheng, Jia</creatorcontrib><description>Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes13081348</identifier><identifier>PMID: 36011259</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anisotropy ; Aptamers ; Biological research ; Biology ; Biology, Experimental ; Bioluminescence ; Biotin ; COVID-19 ; COVID-19 - genetics ; CRISPR ; DNA probes ; Drug delivery ; Drug discovery ; Fluorescence ; Fluorescence in situ hybridization ; Fluorescence resonance energy transfer ; Fluorescent Dyes - chemistry ; Gene expression ; Humans ; Hybridization ; In Situ Hybridization, Fluorescence ; Information storage ; Kinases ; Labeling ; Localization ; Mammals ; Methods ; MicroRNAs ; Microscopy ; miRNA ; mRNA ; Nuclease ; Oligonucleotides ; Proteins ; Review ; RNA - chemistry ; RNA - genetics ; RNA, Messenger ; Tumors</subject><ispartof>Genes, 2022-07, Vol.13 (8), p.1348</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</citedby><cites>FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</cites><orcidid>0000-0001-6198-390X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407474/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407474/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36011259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Jinxi</creatorcontrib><creatorcontrib>Dartawan, Ricky</creatorcontrib><creatorcontrib>Rice, William</creatorcontrib><creatorcontrib>Gao, Forrest</creatorcontrib><creatorcontrib>Zhou, Joseph H</creatorcontrib><creatorcontrib>Sheng, Jia</creatorcontrib><title>Fluorescent Platforms for RNA Chemical Biology Research</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.</description><subject>Anisotropy</subject><subject>Aptamers</subject><subject>Biological research</subject><subject>Biology</subject><subject>Biology, Experimental</subject><subject>Bioluminescence</subject><subject>Biotin</subject><subject>COVID-19</subject><subject>COVID-19 - genetics</subject><subject>CRISPR</subject><subject>DNA probes</subject><subject>Drug delivery</subject><subject>Drug discovery</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Information storage</subject><subject>Kinases</subject><subject>Labeling</subject><subject>Localization</subject><subject>Mammals</subject><subject>Methods</subject><subject>MicroRNAs</subject><subject>Microscopy</subject><subject>miRNA</subject><subject>mRNA</subject><subject>Nuclease</subject><subject>Oligonucleotides</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA, Messenger</subject><subject>Tumors</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkd9LHDEQx4NUqqiPfS0LvvRldbL5tXkpXI9aBVER-xxyucndSnajyW3B_75ZtOoVE8iE5DPfZOZLyBcKJ4xpOF3hgJkyaCnj7Q7Zb0CxmvNGfHq33yNHOd9DGRwaAPGZ7DEJlDZC7xN1FsaYMDscNtVNsBsfU5-rsla3V7Nqvsa-czZUP7oY4uqpusWMNrn1Idn1NmQ8eokH5PfZz7v5eX15_etiPrusHW-bTd0K77jUgoP0TlmmFDZOylaBRqb1QkrrYKkFc8ix9W3rF1LDUkm1UA40ZQfk-7Puw7jocTl9M9lgHlLX2_Rkou3M9s3Qrc0q_jGag-KKF4FvLwIpPo6YN6bvSrUh2AHjmE2jQEkQgrKCHv-H3scxDaW8iZJUaxDqjVrZgKYbfCzvuknUzBQXqmEcoFAnH1BlLqeGxgF9V863EurnBJdizgn9a40UzGS22TK78F_fN-aV_mct-wuciaJO</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>Du, Jinxi</creator><creator>Dartawan, Ricky</creator><creator>Rice, William</creator><creator>Gao, Forrest</creator><creator>Zhou, Joseph H</creator><creator>Sheng, Jia</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6198-390X</orcidid></search><sort><creationdate>20220727</creationdate><title>Fluorescent Platforms for RNA Chemical Biology Research</title><author>Du, Jinxi ; Dartawan, Ricky ; Rice, William ; Gao, Forrest ; Zhou, Joseph H ; Sheng, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Aptamers</topic><topic>Biological research</topic><topic>Biology</topic><topic>Biology, Experimental</topic><topic>Bioluminescence</topic><topic>Biotin</topic><topic>COVID-19</topic><topic>COVID-19 - genetics</topic><topic>CRISPR</topic><topic>DNA probes</topic><topic>Drug delivery</topic><topic>Drug discovery</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Information storage</topic><topic>Kinases</topic><topic>Labeling</topic><topic>Localization</topic><topic>Mammals</topic><topic>Methods</topic><topic>MicroRNAs</topic><topic>Microscopy</topic><topic>miRNA</topic><topic>mRNA</topic><topic>Nuclease</topic><topic>Oligonucleotides</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA, Messenger</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Jinxi</creatorcontrib><creatorcontrib>Dartawan, Ricky</creatorcontrib><creatorcontrib>Rice, William</creatorcontrib><creatorcontrib>Gao, Forrest</creatorcontrib><creatorcontrib>Zhou, Joseph H</creatorcontrib><creatorcontrib>Sheng, Jia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Jinxi</au><au>Dartawan, Ricky</au><au>Rice, William</au><au>Gao, Forrest</au><au>Zhou, Joseph H</au><au>Sheng, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent Platforms for RNA Chemical Biology Research</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2022-07-27</date><risdate>2022</risdate><volume>13</volume><issue>8</issue><spage>1348</spage><pages>1348-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36011259</pmid><doi>10.3390/genes13081348</doi><orcidid>https://orcid.org/0000-0001-6198-390X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2022-07, Vol.13 (8), p.1348
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407474
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Anisotropy
Aptamers
Biological research
Biology
Biology, Experimental
Bioluminescence
Biotin
COVID-19
COVID-19 - genetics
CRISPR
DNA probes
Drug delivery
Drug discovery
Fluorescence
Fluorescence in situ hybridization
Fluorescence resonance energy transfer
Fluorescent Dyes - chemistry
Gene expression
Humans
Hybridization
In Situ Hybridization, Fluorescence
Information storage
Kinases
Labeling
Localization
Mammals
Methods
MicroRNAs
Microscopy
miRNA
mRNA
Nuclease
Oligonucleotides
Proteins
Review
RNA - chemistry
RNA - genetics
RNA, Messenger
Tumors
title Fluorescent Platforms for RNA Chemical Biology Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20Platforms%20for%20RNA%20Chemical%20Biology%20Research&rft.jtitle=Genes&rft.au=Du,%20Jinxi&rft.date=2022-07-27&rft.volume=13&rft.issue=8&rft.spage=1348&rft.pages=1348-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes13081348&rft_dat=%3Cgale_pubme%3EA745723400%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706199057&rft_id=info:pmid/36011259&rft_galeid=A745723400&rfr_iscdi=true