Fluorescent Platforms for RNA Chemical Biology Research
Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-mo...
Gespeichert in:
Veröffentlicht in: | Genes 2022-07, Vol.13 (8), p.1348 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1348 |
container_title | Genes |
container_volume | 13 |
creator | Du, Jinxi Dartawan, Ricky Rice, William Gao, Forrest Zhou, Joseph H Sheng, Jia |
description | Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating. |
doi_str_mv | 10.3390/genes13081348 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745723400</galeid><sourcerecordid>A745723400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</originalsourceid><addsrcrecordid>eNptkd9LHDEQx4NUqqiPfS0LvvRldbL5tXkpXI9aBVER-xxyucndSnajyW3B_75ZtOoVE8iE5DPfZOZLyBcKJ4xpOF3hgJkyaCnj7Q7Zb0CxmvNGfHq33yNHOd9DGRwaAPGZ7DEJlDZC7xN1FsaYMDscNtVNsBsfU5-rsla3V7Nqvsa-czZUP7oY4uqpusWMNrn1Idn1NmQ8eokH5PfZz7v5eX15_etiPrusHW-bTd0K77jUgoP0TlmmFDZOylaBRqb1QkrrYKkFc8ix9W3rF1LDUkm1UA40ZQfk-7Puw7jocTl9M9lgHlLX2_Rkou3M9s3Qrc0q_jGag-KKF4FvLwIpPo6YN6bvSrUh2AHjmE2jQEkQgrKCHv-H3scxDaW8iZJUaxDqjVrZgKYbfCzvuknUzBQXqmEcoFAnH1BlLqeGxgF9V863EurnBJdizgn9a40UzGS22TK78F_fN-aV_mct-wuciaJO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706199057</pqid></control><display><type>article</type><title>Fluorescent Platforms for RNA Chemical Biology Research</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Du, Jinxi ; Dartawan, Ricky ; Rice, William ; Gao, Forrest ; Zhou, Joseph H ; Sheng, Jia</creator><creatorcontrib>Du, Jinxi ; Dartawan, Ricky ; Rice, William ; Gao, Forrest ; Zhou, Joseph H ; Sheng, Jia</creatorcontrib><description>Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes13081348</identifier><identifier>PMID: 36011259</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Anisotropy ; Aptamers ; Biological research ; Biology ; Biology, Experimental ; Bioluminescence ; Biotin ; COVID-19 ; COVID-19 - genetics ; CRISPR ; DNA probes ; Drug delivery ; Drug discovery ; Fluorescence ; Fluorescence in situ hybridization ; Fluorescence resonance energy transfer ; Fluorescent Dyes - chemistry ; Gene expression ; Humans ; Hybridization ; In Situ Hybridization, Fluorescence ; Information storage ; Kinases ; Labeling ; Localization ; Mammals ; Methods ; MicroRNAs ; Microscopy ; miRNA ; mRNA ; Nuclease ; Oligonucleotides ; Proteins ; Review ; RNA - chemistry ; RNA - genetics ; RNA, Messenger ; Tumors</subject><ispartof>Genes, 2022-07, Vol.13 (8), p.1348</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</citedby><cites>FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</cites><orcidid>0000-0001-6198-390X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407474/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407474/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36011259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Jinxi</creatorcontrib><creatorcontrib>Dartawan, Ricky</creatorcontrib><creatorcontrib>Rice, William</creatorcontrib><creatorcontrib>Gao, Forrest</creatorcontrib><creatorcontrib>Zhou, Joseph H</creatorcontrib><creatorcontrib>Sheng, Jia</creatorcontrib><title>Fluorescent Platforms for RNA Chemical Biology Research</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.</description><subject>Anisotropy</subject><subject>Aptamers</subject><subject>Biological research</subject><subject>Biology</subject><subject>Biology, Experimental</subject><subject>Bioluminescence</subject><subject>Biotin</subject><subject>COVID-19</subject><subject>COVID-19 - genetics</subject><subject>CRISPR</subject><subject>DNA probes</subject><subject>Drug delivery</subject><subject>Drug discovery</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Information storage</subject><subject>Kinases</subject><subject>Labeling</subject><subject>Localization</subject><subject>Mammals</subject><subject>Methods</subject><subject>MicroRNAs</subject><subject>Microscopy</subject><subject>miRNA</subject><subject>mRNA</subject><subject>Nuclease</subject><subject>Oligonucleotides</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA - chemistry</subject><subject>RNA - genetics</subject><subject>RNA, Messenger</subject><subject>Tumors</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkd9LHDEQx4NUqqiPfS0LvvRldbL5tXkpXI9aBVER-xxyucndSnajyW3B_75ZtOoVE8iE5DPfZOZLyBcKJ4xpOF3hgJkyaCnj7Q7Zb0CxmvNGfHq33yNHOd9DGRwaAPGZ7DEJlDZC7xN1FsaYMDscNtVNsBsfU5-rsla3V7Nqvsa-czZUP7oY4uqpusWMNrn1Idn1NmQ8eokH5PfZz7v5eX15_etiPrusHW-bTd0K77jUgoP0TlmmFDZOylaBRqb1QkrrYKkFc8ix9W3rF1LDUkm1UA40ZQfk-7Puw7jocTl9M9lgHlLX2_Rkou3M9s3Qrc0q_jGag-KKF4FvLwIpPo6YN6bvSrUh2AHjmE2jQEkQgrKCHv-H3scxDaW8iZJUaxDqjVrZgKYbfCzvuknUzBQXqmEcoFAnH1BlLqeGxgF9V863EurnBJdizgn9a40UzGS22TK78F_fN-aV_mct-wuciaJO</recordid><startdate>20220727</startdate><enddate>20220727</enddate><creator>Du, Jinxi</creator><creator>Dartawan, Ricky</creator><creator>Rice, William</creator><creator>Gao, Forrest</creator><creator>Zhou, Joseph H</creator><creator>Sheng, Jia</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6198-390X</orcidid></search><sort><creationdate>20220727</creationdate><title>Fluorescent Platforms for RNA Chemical Biology Research</title><author>Du, Jinxi ; Dartawan, Ricky ; Rice, William ; Gao, Forrest ; Zhou, Joseph H ; Sheng, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-85fc4695406fc7a377e2c668709e399b66ac0d953ce4e8f88fb690d767b7c0913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropy</topic><topic>Aptamers</topic><topic>Biological research</topic><topic>Biology</topic><topic>Biology, Experimental</topic><topic>Bioluminescence</topic><topic>Biotin</topic><topic>COVID-19</topic><topic>COVID-19 - genetics</topic><topic>CRISPR</topic><topic>DNA probes</topic><topic>Drug delivery</topic><topic>Drug discovery</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Information storage</topic><topic>Kinases</topic><topic>Labeling</topic><topic>Localization</topic><topic>Mammals</topic><topic>Methods</topic><topic>MicroRNAs</topic><topic>Microscopy</topic><topic>miRNA</topic><topic>mRNA</topic><topic>Nuclease</topic><topic>Oligonucleotides</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA - chemistry</topic><topic>RNA - genetics</topic><topic>RNA, Messenger</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Jinxi</creatorcontrib><creatorcontrib>Dartawan, Ricky</creatorcontrib><creatorcontrib>Rice, William</creatorcontrib><creatorcontrib>Gao, Forrest</creatorcontrib><creatorcontrib>Zhou, Joseph H</creatorcontrib><creatorcontrib>Sheng, Jia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Jinxi</au><au>Dartawan, Ricky</au><au>Rice, William</au><au>Gao, Forrest</au><au>Zhou, Joseph H</au><au>Sheng, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorescent Platforms for RNA Chemical Biology Research</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2022-07-27</date><risdate>2022</risdate><volume>13</volume><issue>8</issue><spage>1348</spage><pages>1348-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Efficient detection and observation of dynamic RNA changes remain a tremendous challenge. However, the continuous development of fluorescence applications in recent years enhances the efficacy of RNA imaging. Here we summarize some of these developments from different aspects. For example, single-molecule fluorescence in situ hybridization (smFISH) can detect low abundance RNA at the subcellular level. A relatively new aptamer, Mango, is widely applied to label and track RNA activities in living cells. Molecular beacons (MBs) are valid for quantifying both endogenous and exogenous mRNA and microRNA (miRNA). Covalent binding enzyme labeling fluorescent group with RNA of interest (ROI) partially overcomes the RNA length limitation associated with oligonucleotide synthesis. Forced intercalation (FIT) probes are resistant to nuclease degradation upon binding to target RNA and are used to visualize mRNA and messenger ribonucleoprotein (mRNP) activities. We also summarize the importance of some fluorescence spectroscopic techniques in exploring the function and movement of RNA. Single-molecule fluorescence resonance energy transfer (smFRET) has been employed to investigate the dynamic changes of biomolecules by covalently linking biotin to RNA, and a focus on dye selection increases FRET efficiency. Furthermore, the applications of fluorescence assays in drug discovery and drug delivery have been discussed. Fluorescence imaging can also combine with RNA nanotechnology to target tumors. The invention of novel antibacterial drugs targeting non-coding RNAs (ncRNAs) is also possible with steady-state fluorescence-monitored ligand-binding assay and the T-box riboswitch fluorescence anisotropy assay. More recently, COVID-19 tests using fluorescent clustered regularly interspaced short palindromic repeat (CRISPR) technology have been demonstrated to be efficient and clinically useful. In summary, fluorescence assays have significant applications in both fundamental and clinical research and will facilitate the process of RNA-targeted new drug discovery, therefore deserving further development and updating.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36011259</pmid><doi>10.3390/genes13081348</doi><orcidid>https://orcid.org/0000-0001-6198-390X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2022-07, Vol.13 (8), p.1348 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407474 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Anisotropy Aptamers Biological research Biology Biology, Experimental Bioluminescence Biotin COVID-19 COVID-19 - genetics CRISPR DNA probes Drug delivery Drug discovery Fluorescence Fluorescence in situ hybridization Fluorescence resonance energy transfer Fluorescent Dyes - chemistry Gene expression Humans Hybridization In Situ Hybridization, Fluorescence Information storage Kinases Labeling Localization Mammals Methods MicroRNAs Microscopy miRNA mRNA Nuclease Oligonucleotides Proteins Review RNA - chemistry RNA - genetics RNA, Messenger Tumors |
title | Fluorescent Platforms for RNA Chemical Biology Research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorescent%20Platforms%20for%20RNA%20Chemical%20Biology%20Research&rft.jtitle=Genes&rft.au=Du,%20Jinxi&rft.date=2022-07-27&rft.volume=13&rft.issue=8&rft.spage=1348&rft.pages=1348-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes13081348&rft_dat=%3Cgale_pubme%3EA745723400%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706199057&rft_id=info:pmid/36011259&rft_galeid=A745723400&rfr_iscdi=true |