Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula
Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ o...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-08, Vol.119 (34), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 34 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Liu, Haiyue Lin, Jie-Shun Luo, Zhenpeng Sun, Jongho Huang, Xiaowei Yang, Yang Xu, Ji Wang, Yong-Fei Zhang, Peng Oldroyd, Giles E. D. Xie, Fang |
description | Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction. |
doi_str_mv | 10.1073/pnas.2205920119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27171584</jstor_id><sourcerecordid>27171584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e05702a5ddc9eb9d1df7ff6dd65e67a829c839557b4e11043fb62eaa6fe162b13</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtLYTx_EFCa34koq4wBFZE2fSeuXYi-1UwF-PV1uWj9M7zG-e3swj5ClnF5yp9nIfIF8IwaQWjHN9j2w407zpO83ukw1jQjVDJ7oz8ijnHWNMy4E9JGet1Erovt2Qr9sYcnFlLe4WKdgqUFwMNM4UaFitR0iNjxa8-4kTrWrdulB7AyGgpzYue4_fqQv0I07OwnWkJa3BQlk9PCYPZvAZn9zpOfny9s3n7fvm6tO7D9vXV43turY0yKRiAuQ0WY2jnvg0q3nup6mX2CsYhLZDq6VUY4ecs66dx14gQD8j78XI23Py6ui7X8cFJ4uhJPBmn9wC6YeJ4My_k-BuzHW8NbqrX9SsGry8M0jx24q5mMVli95DwLhmI2o-reSgREVf_Ifu4ppCPe9A1ZyCD6pSl0fKpphzwvkUhjNzqM4cqjN_qqsbz_--4cT_7qoCz47ALpeYTnOhuOJy6NpfQc6hHQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2708392187</pqid></control><display><type>article</type><title>Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Haiyue ; Lin, Jie-Shun ; Luo, Zhenpeng ; Sun, Jongho ; Huang, Xiaowei ; Yang, Yang ; Xu, Ji ; Wang, Yong-Fei ; Zhang, Peng ; Oldroyd, Giles E. D. ; Xie, Fang</creator><creatorcontrib>Liu, Haiyue ; Lin, Jie-Shun ; Luo, Zhenpeng ; Sun, Jongho ; Huang, Xiaowei ; Yang, Yang ; Xu, Ji ; Wang, Yong-Fei ; Zhang, Peng ; Oldroyd, Giles E. D. ; Xie, Fang</creatorcontrib><description>Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2205920119</identifier><identifier>PMID: 35972963</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alfalfa ; Arbuscular mycorrhizas ; Biological Sciences ; Calcium - metabolism ; Calcium channels ; Calcium Channels - genetics ; Calcium Channels - metabolism ; Calcium influx ; Calcium ions ; Calcium Signaling - physiology ; Calcium signalling ; Cell lines ; Cell Nucleus - metabolism ; Gain of Function Mutation ; Gene Expression Regulation, Plant ; HEK293 Cells ; Humans ; Hydrogen bonds ; Medicago truncatula - genetics ; Medicago truncatula - physiology ; Mutation ; Nitrogen fixation ; Nitrogenation ; Nodulation ; Oscillations ; Permeability ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Root Nodulation - genetics ; Plant Root Nodulation - physiology ; Plant Roots - genetics ; Plant Roots - physiology ; Symbiosis ; Symbiosis - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-08, Vol.119 (34), p.1-11</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Aug 23, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e05702a5ddc9eb9d1df7ff6dd65e67a829c839557b4e11043fb62eaa6fe162b13</citedby><cites>FETCH-LOGICAL-c443t-e05702a5ddc9eb9d1df7ff6dd65e67a829c839557b4e11043fb62eaa6fe162b13</cites><orcidid>0000-0003-0408-2923 ; 0000-0002-4512-8505 ; 0000-0002-3726-0303 ; 0000-0001-9009-2153 ; 0000-0002-3705-3072 ; 0000-0003-3139-7701 ; 0000-0002-5245-6355 ; 0000-0001-9964-687X ; 0000-0002-0530-1430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407390/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407390/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35972963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Haiyue</creatorcontrib><creatorcontrib>Lin, Jie-Shun</creatorcontrib><creatorcontrib>Luo, Zhenpeng</creatorcontrib><creatorcontrib>Sun, Jongho</creatorcontrib><creatorcontrib>Huang, Xiaowei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xu, Ji</creatorcontrib><creatorcontrib>Wang, Yong-Fei</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Oldroyd, Giles E. D.</creatorcontrib><creatorcontrib>Xie, Fang</creatorcontrib><title>Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.</description><subject>Alfalfa</subject><subject>Arbuscular mycorrhizas</subject><subject>Biological Sciences</subject><subject>Calcium - metabolism</subject><subject>Calcium channels</subject><subject>Calcium Channels - genetics</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium signalling</subject><subject>Cell lines</subject><subject>Cell Nucleus - metabolism</subject><subject>Gain of Function Mutation</subject><subject>Gene Expression Regulation, Plant</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hydrogen bonds</subject><subject>Medicago truncatula - genetics</subject><subject>Medicago truncatula - physiology</subject><subject>Mutation</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>Nodulation</subject><subject>Oscillations</subject><subject>Permeability</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Root Nodulation - genetics</subject><subject>Plant Root Nodulation - physiology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - physiology</subject><subject>Symbiosis</subject><subject>Symbiosis - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EokvhzAlkiQuXtLYTx_EFCa34koq4wBFZE2fSeuXYi-1UwF-PV1uWj9M7zG-e3swj5ClnF5yp9nIfIF8IwaQWjHN9j2w407zpO83ukw1jQjVDJ7oz8ijnHWNMy4E9JGet1Erovt2Qr9sYcnFlLe4WKdgqUFwMNM4UaFitR0iNjxa8-4kTrWrdulB7AyGgpzYue4_fqQv0I07OwnWkJa3BQlk9PCYPZvAZn9zpOfny9s3n7fvm6tO7D9vXV43turY0yKRiAuQ0WY2jnvg0q3nup6mX2CsYhLZDq6VUY4ecs66dx14gQD8j78XI23Py6ui7X8cFJ4uhJPBmn9wC6YeJ4My_k-BuzHW8NbqrX9SsGry8M0jx24q5mMVli95DwLhmI2o-reSgREVf_Ifu4ppCPe9A1ZyCD6pSl0fKpphzwvkUhjNzqM4cqjN_qqsbz_--4cT_7qoCz47ALpeYTnOhuOJy6NpfQc6hHQ</recordid><startdate>20220823</startdate><enddate>20220823</enddate><creator>Liu, Haiyue</creator><creator>Lin, Jie-Shun</creator><creator>Luo, Zhenpeng</creator><creator>Sun, Jongho</creator><creator>Huang, Xiaowei</creator><creator>Yang, Yang</creator><creator>Xu, Ji</creator><creator>Wang, Yong-Fei</creator><creator>Zhang, Peng</creator><creator>Oldroyd, Giles E. D.</creator><creator>Xie, Fang</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0408-2923</orcidid><orcidid>https://orcid.org/0000-0002-4512-8505</orcidid><orcidid>https://orcid.org/0000-0002-3726-0303</orcidid><orcidid>https://orcid.org/0000-0001-9009-2153</orcidid><orcidid>https://orcid.org/0000-0002-3705-3072</orcidid><orcidid>https://orcid.org/0000-0003-3139-7701</orcidid><orcidid>https://orcid.org/0000-0002-5245-6355</orcidid><orcidid>https://orcid.org/0000-0001-9964-687X</orcidid><orcidid>https://orcid.org/0000-0002-0530-1430</orcidid></search><sort><creationdate>20220823</creationdate><title>Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula</title><author>Liu, Haiyue ; Lin, Jie-Shun ; Luo, Zhenpeng ; Sun, Jongho ; Huang, Xiaowei ; Yang, Yang ; Xu, Ji ; Wang, Yong-Fei ; Zhang, Peng ; Oldroyd, Giles E. D. ; Xie, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e05702a5ddc9eb9d1df7ff6dd65e67a829c839557b4e11043fb62eaa6fe162b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alfalfa</topic><topic>Arbuscular mycorrhizas</topic><topic>Biological Sciences</topic><topic>Calcium - metabolism</topic><topic>Calcium channels</topic><topic>Calcium Channels - genetics</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium signalling</topic><topic>Cell lines</topic><topic>Cell Nucleus - metabolism</topic><topic>Gain of Function Mutation</topic><topic>Gene Expression Regulation, Plant</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hydrogen bonds</topic><topic>Medicago truncatula - genetics</topic><topic>Medicago truncatula - physiology</topic><topic>Mutation</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>Nodulation</topic><topic>Oscillations</topic><topic>Permeability</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Root Nodulation - genetics</topic><topic>Plant Root Nodulation - physiology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - physiology</topic><topic>Symbiosis</topic><topic>Symbiosis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haiyue</creatorcontrib><creatorcontrib>Lin, Jie-Shun</creatorcontrib><creatorcontrib>Luo, Zhenpeng</creatorcontrib><creatorcontrib>Sun, Jongho</creatorcontrib><creatorcontrib>Huang, Xiaowei</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xu, Ji</creatorcontrib><creatorcontrib>Wang, Yong-Fei</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Oldroyd, Giles E. D.</creatorcontrib><creatorcontrib>Xie, Fang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haiyue</au><au>Lin, Jie-Shun</au><au>Luo, Zhenpeng</au><au>Sun, Jongho</au><au>Huang, Xiaowei</au><au>Yang, Yang</au><au>Xu, Ji</au><au>Wang, Yong-Fei</au><au>Zhang, Peng</au><au>Oldroyd, Giles E. D.</au><au>Xie, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-08-23</date><risdate>2022</risdate><volume>119</volume><issue>34</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nuclear Ca2+ oscillations allow symbiosis signaling, facilitating plant recognition of beneficial microsymbionts, nitrogen-fixing rhizobia, and nutrient-capturing arbuscular mycorrhizal fungi. Two classes of channels, DMI1 and CNGC15, in a complex on the nuclear membrane, coordinate symbiotic Ca2+ oscillations. However, the mechanism of Ca2+ signature generation is unknown. Here, we demonstrate spontaneous activation of this channel complex, through gain-of-function mutations in DMI1, leading to spontaneous nuclear Ca2+ oscillations and spontaneous nodulation, in a CNGC15-dependent manner. The mutations destabilize a hydrogen-bond or salt-bridge network between two RCK domains, with the resultant structural changes, alongside DMI1 cation permeability, activating the channel complex. This channel complex was reconstituted in human HEK293T cell lines, with the resultant calcium influx enhanced by autoactivated DMI1 and CNGC15s. Our results demonstrate the mode of activation of this nuclear channel complex, show that DMI1 and CNGC15 are sufficient to create oscillatory Ca2+ signals, and provide insights into its native mode of induction.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35972963</pmid><doi>10.1073/pnas.2205920119</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0408-2923</orcidid><orcidid>https://orcid.org/0000-0002-4512-8505</orcidid><orcidid>https://orcid.org/0000-0002-3726-0303</orcidid><orcidid>https://orcid.org/0000-0001-9009-2153</orcidid><orcidid>https://orcid.org/0000-0002-3705-3072</orcidid><orcidid>https://orcid.org/0000-0003-3139-7701</orcidid><orcidid>https://orcid.org/0000-0002-5245-6355</orcidid><orcidid>https://orcid.org/0000-0001-9964-687X</orcidid><orcidid>https://orcid.org/0000-0002-0530-1430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-08, Vol.119 (34), p.1-11 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9407390 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alfalfa Arbuscular mycorrhizas Biological Sciences Calcium - metabolism Calcium channels Calcium Channels - genetics Calcium Channels - metabolism Calcium influx Calcium ions Calcium Signaling - physiology Calcium signalling Cell lines Cell Nucleus - metabolism Gain of Function Mutation Gene Expression Regulation, Plant HEK293 Cells Humans Hydrogen bonds Medicago truncatula - genetics Medicago truncatula - physiology Mutation Nitrogen fixation Nitrogenation Nodulation Oscillations Permeability Plant Proteins - genetics Plant Proteins - metabolism Plant Root Nodulation - genetics Plant Root Nodulation - physiology Plant Roots - genetics Plant Roots - physiology Symbiosis Symbiosis - physiology |
title | Constitutive activation of a nuclear-localized calcium channel complex in Medicago truncatula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A31%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20activation%20of%20a%20nuclear-localized%20calcium%20channel%20complex%20in%20Medicago%20truncatula&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Liu,%20Haiyue&rft.date=2022-08-23&rft.volume=119&rft.issue=34&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2205920119&rft_dat=%3Cjstor_pubme%3E27171584%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2708392187&rft_id=info:pmid/35972963&rft_jstor_id=27171584&rfr_iscdi=true |