Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways

Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2022-08, Vol.14 (16), p.3958
Hauptverfasser: Bond, Kyle H, Sims-Lucas, Sunder, Oxburgh, Leif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 3958
container_title Cancers
container_volume 14
creator Bond, Kyle H
Sims-Lucas, Sunder
Oxburgh, Leif
description Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.
doi_str_mv 10.3390/cancers14163958
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9406217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745271306</galeid><sourcerecordid>A745271306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</originalsourceid><addsrcrecordid>eNptks9LHTEQx4O0qFjPXgNeenmaX5vsXgqyrVYQlNZCb2FeMvteZDexyb7K--8bq7RVOjnMkHzmOzNhCDni7ETKjp06iA5z4Ypr2TXtDtkXzIiF1p1680-8Rw5LuWPVpORGm12yJzXjrGv4PvG3kFc4FzqkTL9ghJH2kF2IaQJ6kdPDvKZ9inNOI730GOcwBPR0uaVfXUaMIa7o-fX3j5z2OI70pnJhwAxzSJHewLx-gG15R94OMBY8fPYH5Nv5p9v-8-Lq-uKyP7taOKWbeSEap8Ezpb1pBofOK6ZMB95pwwcj0IlWCdkq03LnPAMJLXjlDTPLZsk8kwfkw5Pu_WY5oXe13Qyjvc9hgry1CYJ9-RLD2q7ST9sppgU3VeD9s0BOPzZYZjuF4upgEDFtihW1lmZNq1VFj1-hd2mT6__9pjQXgmv2l1rBiDbEIdW67lHUnhnVCMMl05U6-Q9Vj8cpuBRxCPX-RcLpU4LLqZSMw58ZObOPu2Ff7Yb8BbpFq1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706122160</pqid></control><display><type>article</type><title>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bond, Kyle H ; Sims-Lucas, Sunder ; Oxburgh, Leif</creator><creatorcontrib>Bond, Kyle H ; Sims-Lucas, Sunder ; Oxburgh, Leif</creatorcontrib><description>Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14163958</identifier><identifier>PMID: 36010951</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Animal models ; Binding sites ; Cancer ; Carcinoma ; Care and treatment ; Cell adhesion &amp; migration ; Cell culture ; Cell cycle ; Cell growth ; Cell proliferation ; Clear cell-type renal cell carcinoma ; Drug targeting ; Gene expression ; Genomes ; Genotype &amp; phenotype ; Health aspects ; Kidney cancer ; Kinases ; Laboratories ; Metastasis ; Methods ; Patient outcomes ; Patients ; Phenotypes ; Proteins ; Silibinin ; Therapeutic targets ; Transcription factors ; Tumor cells</subject><ispartof>Cancers, 2022-08, Vol.14 (16), p.3958</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</citedby><cites>FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</cites><orcidid>0000-0003-1908-4809 ; 0000-0002-2825-7663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406217/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406217/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Bond, Kyle H</creatorcontrib><creatorcontrib>Sims-Lucas, Sunder</creatorcontrib><creatorcontrib>Oxburgh, Leif</creatorcontrib><title>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</title><title>Cancers</title><description>Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.</description><subject>Animal models</subject><subject>Binding sites</subject><subject>Cancer</subject><subject>Carcinoma</subject><subject>Care and treatment</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Clear cell-type renal cell carcinoma</subject><subject>Drug targeting</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Health aspects</subject><subject>Kidney cancer</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Silibinin</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Tumor cells</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptks9LHTEQx4O0qFjPXgNeenmaX5vsXgqyrVYQlNZCb2FeMvteZDexyb7K--8bq7RVOjnMkHzmOzNhCDni7ETKjp06iA5z4Ypr2TXtDtkXzIiF1p1680-8Rw5LuWPVpORGm12yJzXjrGv4PvG3kFc4FzqkTL9ghJH2kF2IaQJ6kdPDvKZ9inNOI730GOcwBPR0uaVfXUaMIa7o-fX3j5z2OI70pnJhwAxzSJHewLx-gG15R94OMBY8fPYH5Nv5p9v-8-Lq-uKyP7taOKWbeSEap8Ezpb1pBofOK6ZMB95pwwcj0IlWCdkq03LnPAMJLXjlDTPLZsk8kwfkw5Pu_WY5oXe13Qyjvc9hgry1CYJ9-RLD2q7ST9sppgU3VeD9s0BOPzZYZjuF4upgEDFtihW1lmZNq1VFj1-hd2mT6__9pjQXgmv2l1rBiDbEIdW67lHUnhnVCMMl05U6-Q9Vj8cpuBRxCPX-RcLpU4LLqZSMw58ZObOPu2Ff7Yb8BbpFq1g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bond, Kyle H</creator><creator>Sims-Lucas, Sunder</creator><creator>Oxburgh, Leif</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1908-4809</orcidid><orcidid>https://orcid.org/0000-0002-2825-7663</orcidid></search><sort><creationdate>20220801</creationdate><title>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</title><author>Bond, Kyle H ; Sims-Lucas, Sunder ; Oxburgh, Leif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal models</topic><topic>Binding sites</topic><topic>Cancer</topic><topic>Carcinoma</topic><topic>Care and treatment</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Clear cell-type renal cell carcinoma</topic><topic>Drug targeting</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Health aspects</topic><topic>Kidney cancer</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Silibinin</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Tumor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bond, Kyle H</creatorcontrib><creatorcontrib>Sims-Lucas, Sunder</creatorcontrib><creatorcontrib>Oxburgh, Leif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bond, Kyle H</au><au>Sims-Lucas, Sunder</au><au>Oxburgh, Leif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</atitle><jtitle>Cancers</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>16</issue><spage>3958</spage><pages>3958-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36010951</pmid><doi>10.3390/cancers14163958</doi><orcidid>https://orcid.org/0000-0003-1908-4809</orcidid><orcidid>https://orcid.org/0000-0002-2825-7663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2022-08, Vol.14 (16), p.3958
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9406217
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animal models
Binding sites
Cancer
Carcinoma
Care and treatment
Cell adhesion & migration
Cell culture
Cell cycle
Cell growth
Cell proliferation
Clear cell-type renal cell carcinoma
Drug targeting
Gene expression
Genomes
Genotype & phenotype
Health aspects
Kidney cancer
Kinases
Laboratories
Metastasis
Methods
Patient outcomes
Patients
Phenotypes
Proteins
Silibinin
Therapeutic targets
Transcription factors
Tumor cells
title Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targets%20for%20Renal%20Carcinoma%20Growth%20Control%20Identified%20by%20Screening%20FOXD1%20Cell%20Proliferation%20Pathways&rft.jtitle=Cancers&rft.au=Bond,%20Kyle%20H&rft.date=2022-08-01&rft.volume=14&rft.issue=16&rft.spage=3958&rft.pages=3958-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14163958&rft_dat=%3Cgale_pubme%3EA745271306%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706122160&rft_id=info:pmid/36010951&rft_galeid=A745271306&rfr_iscdi=true