Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways
Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We...
Gespeichert in:
Veröffentlicht in: | Cancers 2022-08, Vol.14 (16), p.3958 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 3958 |
container_title | Cancers |
container_volume | 14 |
creator | Bond, Kyle H Sims-Lucas, Sunder Oxburgh, Leif |
description | Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth. |
doi_str_mv | 10.3390/cancers14163958 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9406217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745271306</galeid><sourcerecordid>A745271306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</originalsourceid><addsrcrecordid>eNptks9LHTEQx4O0qFjPXgNeenmaX5vsXgqyrVYQlNZCb2FeMvteZDexyb7K--8bq7RVOjnMkHzmOzNhCDni7ETKjp06iA5z4Ypr2TXtDtkXzIiF1p1680-8Rw5LuWPVpORGm12yJzXjrGv4PvG3kFc4FzqkTL9ghJH2kF2IaQJ6kdPDvKZ9inNOI730GOcwBPR0uaVfXUaMIa7o-fX3j5z2OI70pnJhwAxzSJHewLx-gG15R94OMBY8fPYH5Nv5p9v-8-Lq-uKyP7taOKWbeSEap8Ezpb1pBofOK6ZMB95pwwcj0IlWCdkq03LnPAMJLXjlDTPLZsk8kwfkw5Pu_WY5oXe13Qyjvc9hgry1CYJ9-RLD2q7ST9sppgU3VeD9s0BOPzZYZjuF4upgEDFtihW1lmZNq1VFj1-hd2mT6__9pjQXgmv2l1rBiDbEIdW67lHUnhnVCMMl05U6-Q9Vj8cpuBRxCPX-RcLpU4LLqZSMw58ZObOPu2Ff7Yb8BbpFq1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706122160</pqid></control><display><type>article</type><title>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bond, Kyle H ; Sims-Lucas, Sunder ; Oxburgh, Leif</creator><creatorcontrib>Bond, Kyle H ; Sims-Lucas, Sunder ; Oxburgh, Leif</creatorcontrib><description>Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14163958</identifier><identifier>PMID: 36010951</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Animal models ; Binding sites ; Cancer ; Carcinoma ; Care and treatment ; Cell adhesion & migration ; Cell culture ; Cell cycle ; Cell growth ; Cell proliferation ; Clear cell-type renal cell carcinoma ; Drug targeting ; Gene expression ; Genomes ; Genotype & phenotype ; Health aspects ; Kidney cancer ; Kinases ; Laboratories ; Metastasis ; Methods ; Patient outcomes ; Patients ; Phenotypes ; Proteins ; Silibinin ; Therapeutic targets ; Transcription factors ; Tumor cells</subject><ispartof>Cancers, 2022-08, Vol.14 (16), p.3958</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</citedby><cites>FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</cites><orcidid>0000-0003-1908-4809 ; 0000-0002-2825-7663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406217/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406217/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Bond, Kyle H</creatorcontrib><creatorcontrib>Sims-Lucas, Sunder</creatorcontrib><creatorcontrib>Oxburgh, Leif</creatorcontrib><title>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</title><title>Cancers</title><description>Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.</description><subject>Animal models</subject><subject>Binding sites</subject><subject>Cancer</subject><subject>Carcinoma</subject><subject>Care and treatment</subject><subject>Cell adhesion & migration</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Clear cell-type renal cell carcinoma</subject><subject>Drug targeting</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Health aspects</subject><subject>Kidney cancer</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Patient outcomes</subject><subject>Patients</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Silibinin</subject><subject>Therapeutic targets</subject><subject>Transcription factors</subject><subject>Tumor cells</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptks9LHTEQx4O0qFjPXgNeenmaX5vsXgqyrVYQlNZCb2FeMvteZDexyb7K--8bq7RVOjnMkHzmOzNhCDni7ETKjp06iA5z4Ypr2TXtDtkXzIiF1p1680-8Rw5LuWPVpORGm12yJzXjrGv4PvG3kFc4FzqkTL9ghJH2kF2IaQJ6kdPDvKZ9inNOI730GOcwBPR0uaVfXUaMIa7o-fX3j5z2OI70pnJhwAxzSJHewLx-gG15R94OMBY8fPYH5Nv5p9v-8-Lq-uKyP7taOKWbeSEap8Ezpb1pBofOK6ZMB95pwwcj0IlWCdkq03LnPAMJLXjlDTPLZsk8kwfkw5Pu_WY5oXe13Qyjvc9hgry1CYJ9-RLD2q7ST9sppgU3VeD9s0BOPzZYZjuF4upgEDFtihW1lmZNq1VFj1-hd2mT6__9pjQXgmv2l1rBiDbEIdW67lHUnhnVCMMl05U6-Q9Vj8cpuBRxCPX-RcLpU4LLqZSMw58ZObOPu2Ff7Yb8BbpFq1g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Bond, Kyle H</creator><creator>Sims-Lucas, Sunder</creator><creator>Oxburgh, Leif</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1908-4809</orcidid><orcidid>https://orcid.org/0000-0002-2825-7663</orcidid></search><sort><creationdate>20220801</creationdate><title>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</title><author>Bond, Kyle H ; Sims-Lucas, Sunder ; Oxburgh, Leif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-25c6ad046d75fcecd40479adc671f72ec2842384781ccd0a3a8ad4d707b5b0d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal models</topic><topic>Binding sites</topic><topic>Cancer</topic><topic>Carcinoma</topic><topic>Care and treatment</topic><topic>Cell adhesion & migration</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Clear cell-type renal cell carcinoma</topic><topic>Drug targeting</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Health aspects</topic><topic>Kidney cancer</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Patient outcomes</topic><topic>Patients</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Silibinin</topic><topic>Therapeutic targets</topic><topic>Transcription factors</topic><topic>Tumor cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bond, Kyle H</creatorcontrib><creatorcontrib>Sims-Lucas, Sunder</creatorcontrib><creatorcontrib>Oxburgh, Leif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bond, Kyle H</au><au>Sims-Lucas, Sunder</au><au>Oxburgh, Leif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways</atitle><jtitle>Cancers</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>14</volume><issue>16</issue><spage>3958</spage><pages>3958-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36010951</pmid><doi>10.3390/cancers14163958</doi><orcidid>https://orcid.org/0000-0003-1908-4809</orcidid><orcidid>https://orcid.org/0000-0002-2825-7663</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6694 |
ispartof | Cancers, 2022-08, Vol.14 (16), p.3958 |
issn | 2072-6694 2072-6694 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9406217 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animal models Binding sites Cancer Carcinoma Care and treatment Cell adhesion & migration Cell culture Cell cycle Cell growth Cell proliferation Clear cell-type renal cell carcinoma Drug targeting Gene expression Genomes Genotype & phenotype Health aspects Kidney cancer Kinases Laboratories Metastasis Methods Patient outcomes Patients Phenotypes Proteins Silibinin Therapeutic targets Transcription factors Tumor cells |
title | Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targets%20for%20Renal%20Carcinoma%20Growth%20Control%20Identified%20by%20Screening%20FOXD1%20Cell%20Proliferation%20Pathways&rft.jtitle=Cancers&rft.au=Bond,%20Kyle%20H&rft.date=2022-08-01&rft.volume=14&rft.issue=16&rft.spage=3958&rft.pages=3958-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14163958&rft_dat=%3Cgale_pubme%3EA745271306%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2706122160&rft_id=info:pmid/36010951&rft_galeid=A745271306&rfr_iscdi=true |