Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys
The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady stat...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2008-11, Vol.43 (22), p.7165-7170 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7170 |
---|---|
container_issue | 22 |
container_start_page | 7165 |
container_title | Journal of materials science |
container_volume | 43 |
creator | Slooff, F. A. Zhou, J. Duszczyk, J. Katgerman, L. |
description | The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements. |
doi_str_mv | 10.1007/s10853-008-3014-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9403653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36187318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</originalsourceid><addsrcrecordid>eNp9kc9qVDEUh4NY7LT6AO4uiOLm1pP_uRuhFK1ixYW6cRNyc3NnUjLJmNxbmZ3v0Dfsk5hhhoqCbpLF-c7Hj_ND6CmGMwwgXxUMitMWQLUUMGvJA7TAXNKWKaAP0QKAkJYwgY_RSSnXAMAlwY_QMRVAO-CwQB8-T9n42A5u4-Lg4tTYFMvkp3nyN64x0YRt8aVJYzOtsnPNj5zm5WpqPi7vft6eh_p8i40JIW3LY3Q0mlDck8N_ir6-ffPl4l179eny_cX5VWs5qKlVgvZKYsuGkfcG2DA4rphTopcOGzMKK4SSHVgrOqG443joRzswyo11BgM9Ra_33s3cr91ga-psgt5kvzZ5q5Px-s9J9Cu9TDe6Y0AFp1Xw4iDI6fvsyqTXvlgXgokuzUVTgZWkWFXw5X9BIkERLjvBKvrsL_Q6zbmer1KEd5xKTEml8J6yOZWS3XifGoPedar3neraqd51qnc7zw9mU6wJYzbR-nK_SKATQLCoHNlzpY7i0uXfCf4t_wVLS7If</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259537132</pqid></control><display><type>article</type><title>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</title><source>SpringerNature Complete Journals</source><creator>Slooff, F. A. ; Zhou, J. ; Duszczyk, J. ; Katgerman, L.</creator><creatorcontrib>Slooff, F. A. ; Zhou, J. ; Duszczyk, J. ; Katgerman, L.</creatorcontrib><description>The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-3014-2</identifier><identifier>PMID: 36039050</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum base alloys ; Characterization and Evaluation of Materials ; Classical Mechanics ; Compression tests ; Constitutive equations ; Constitutive relationships ; Cross-disciplinary physics: materials science; rheology ; Crystallography and Scattering Methods ; Deformation ; Exact sciences and technology ; High temperature ; Magnesium alloys ; Magnesium base alloys ; Materials Science ; Metal forming ; Other topics in materials science ; Physics ; Polymer Sciences ; Solid Mechanics ; Steady state ; Strain analysis ; Yield strength ; Zinc</subject><ispartof>Journal of materials science, 2008-11, Vol.43 (22), p.7165-7170</ispartof><rights>The Author(s) 2008</rights><rights>2009 INIST-CNRS</rights><rights>The Author(s) 2008. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</citedby><cites>FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-3014-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-3014-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20960216$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Slooff, F. A.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Duszczyk, J.</creatorcontrib><creatorcontrib>Katgerman, L.</creatorcontrib><title>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.</description><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Compression tests</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Metal forming</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Steady state</subject><subject>Strain analysis</subject><subject>Yield strength</subject><subject>Zinc</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9qVDEUh4NY7LT6AO4uiOLm1pP_uRuhFK1ixYW6cRNyc3NnUjLJmNxbmZ3v0Dfsk5hhhoqCbpLF-c7Hj_ND6CmGMwwgXxUMitMWQLUUMGvJA7TAXNKWKaAP0QKAkJYwgY_RSSnXAMAlwY_QMRVAO-CwQB8-T9n42A5u4-Lg4tTYFMvkp3nyN64x0YRt8aVJYzOtsnPNj5zm5WpqPi7vft6eh_p8i40JIW3LY3Q0mlDck8N_ir6-ffPl4l179eny_cX5VWs5qKlVgvZKYsuGkfcG2DA4rphTopcOGzMKK4SSHVgrOqG443joRzswyo11BgM9Ra_33s3cr91ga-psgt5kvzZ5q5Px-s9J9Cu9TDe6Y0AFp1Xw4iDI6fvsyqTXvlgXgokuzUVTgZWkWFXw5X9BIkERLjvBKvrsL_Q6zbmer1KEd5xKTEml8J6yOZWS3XifGoPedar3neraqd51qnc7zw9mU6wJYzbR-nK_SKATQLCoHNlzpY7i0uXfCf4t_wVLS7If</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Slooff, F. A.</creator><creator>Zhou, J.</creator><creator>Duszczyk, J.</creator><creator>Katgerman, L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20081101</creationdate><title>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</title><author>Slooff, F. A. ; Zhou, J. ; Duszczyk, J. ; Katgerman, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Compression tests</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Metal forming</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Steady state</topic><topic>Strain analysis</topic><topic>Yield strength</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slooff, F. A.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Duszczyk, J.</creatorcontrib><creatorcontrib>Katgerman, L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slooff, F. A.</au><au>Zhou, J.</au><au>Duszczyk, J.</au><au>Katgerman, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>43</volume><issue>22</issue><spage>7165</spage><epage>7170</epage><pages>7165-7170</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36039050</pmid><doi>10.1007/s10853-008-3014-2</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2008-11, Vol.43 (22), p.7165-7170 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9403653 |
source | SpringerNature Complete Journals |
subjects | Aluminum base alloys Characterization and Evaluation of Materials Classical Mechanics Compression tests Constitutive equations Constitutive relationships Cross-disciplinary physics: materials science rheology Crystallography and Scattering Methods Deformation Exact sciences and technology High temperature Magnesium alloys Magnesium base alloys Materials Science Metal forming Other topics in materials science Physics Polymer Sciences Solid Mechanics Steady state Strain analysis Yield strength Zinc |
title | Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-dependent%20constitutive%20analysis%20of%20three%20wrought%20Mg%E2%80%93Al%E2%80%93Zn%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Slooff,%20F.%20A.&rft.date=2008-11-01&rft.volume=43&rft.issue=22&rft.spage=7165&rft.epage=7170&rft.pages=7165-7170&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-3014-2&rft_dat=%3Cproquest_pubme%3E36187318%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259537132&rft_id=info:pmid/36039050&rfr_iscdi=true |