Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys

The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2008-11, Vol.43 (22), p.7165-7170
Hauptverfasser: Slooff, F. A., Zhou, J., Duszczyk, J., Katgerman, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7170
container_issue 22
container_start_page 7165
container_title Journal of materials science
container_volume 43
creator Slooff, F. A.
Zhou, J.
Duszczyk, J.
Katgerman, L.
description The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.
doi_str_mv 10.1007/s10853-008-3014-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9403653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36187318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</originalsourceid><addsrcrecordid>eNp9kc9qVDEUh4NY7LT6AO4uiOLm1pP_uRuhFK1ixYW6cRNyc3NnUjLJmNxbmZ3v0Dfsk5hhhoqCbpLF-c7Hj_ND6CmGMwwgXxUMitMWQLUUMGvJA7TAXNKWKaAP0QKAkJYwgY_RSSnXAMAlwY_QMRVAO-CwQB8-T9n42A5u4-Lg4tTYFMvkp3nyN64x0YRt8aVJYzOtsnPNj5zm5WpqPi7vft6eh_p8i40JIW3LY3Q0mlDck8N_ir6-ffPl4l179eny_cX5VWs5qKlVgvZKYsuGkfcG2DA4rphTopcOGzMKK4SSHVgrOqG443joRzswyo11BgM9Ra_33s3cr91ga-psgt5kvzZ5q5Px-s9J9Cu9TDe6Y0AFp1Xw4iDI6fvsyqTXvlgXgokuzUVTgZWkWFXw5X9BIkERLjvBKvrsL_Q6zbmer1KEd5xKTEml8J6yOZWS3XifGoPedar3neraqd51qnc7zw9mU6wJYzbR-nK_SKATQLCoHNlzpY7i0uXfCf4t_wVLS7If</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259537132</pqid></control><display><type>article</type><title>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</title><source>SpringerNature Complete Journals</source><creator>Slooff, F. A. ; Zhou, J. ; Duszczyk, J. ; Katgerman, L.</creator><creatorcontrib>Slooff, F. A. ; Zhou, J. ; Duszczyk, J. ; Katgerman, L.</creatorcontrib><description>The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-008-3014-2</identifier><identifier>PMID: 36039050</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum base alloys ; Characterization and Evaluation of Materials ; Classical Mechanics ; Compression tests ; Constitutive equations ; Constitutive relationships ; Cross-disciplinary physics: materials science; rheology ; Crystallography and Scattering Methods ; Deformation ; Exact sciences and technology ; High temperature ; Magnesium alloys ; Magnesium base alloys ; Materials Science ; Metal forming ; Other topics in materials science ; Physics ; Polymer Sciences ; Solid Mechanics ; Steady state ; Strain analysis ; Yield strength ; Zinc</subject><ispartof>Journal of materials science, 2008-11, Vol.43 (22), p.7165-7170</ispartof><rights>The Author(s) 2008</rights><rights>2009 INIST-CNRS</rights><rights>The Author(s) 2008. This work is published under https://creativecommons.org/licenses/by-nc/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</citedby><cites>FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-008-3014-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-008-3014-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20960216$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Slooff, F. A.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Duszczyk, J.</creatorcontrib><creatorcontrib>Katgerman, L.</creatorcontrib><title>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.</description><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Compression tests</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Magnesium alloys</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Metal forming</subject><subject>Other topics in materials science</subject><subject>Physics</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Steady state</subject><subject>Strain analysis</subject><subject>Yield strength</subject><subject>Zinc</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9qVDEUh4NY7LT6AO4uiOLm1pP_uRuhFK1ixYW6cRNyc3NnUjLJmNxbmZ3v0Dfsk5hhhoqCbpLF-c7Hj_ND6CmGMwwgXxUMitMWQLUUMGvJA7TAXNKWKaAP0QKAkJYwgY_RSSnXAMAlwY_QMRVAO-CwQB8-T9n42A5u4-Lg4tTYFMvkp3nyN64x0YRt8aVJYzOtsnPNj5zm5WpqPi7vft6eh_p8i40JIW3LY3Q0mlDck8N_ir6-ffPl4l179eny_cX5VWs5qKlVgvZKYsuGkfcG2DA4rphTopcOGzMKK4SSHVgrOqG443joRzswyo11BgM9Ra_33s3cr91ga-psgt5kvzZ5q5Px-s9J9Cu9TDe6Y0AFp1Xw4iDI6fvsyqTXvlgXgokuzUVTgZWkWFXw5X9BIkERLjvBKvrsL_Q6zbmer1KEd5xKTEml8J6yOZWS3XifGoPedar3neraqd51qnc7zw9mU6wJYzbR-nK_SKATQLCoHNlzpY7i0uXfCf4t_wVLS7If</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Slooff, F. A.</creator><creator>Zhou, J.</creator><creator>Duszczyk, J.</creator><creator>Katgerman, L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20081101</creationdate><title>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</title><author>Slooff, F. A. ; Zhou, J. ; Duszczyk, J. ; Katgerman, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-863b871c4df5ba04dde584e86b7e1aaf6c668790cc69685e51dbfcd435acea103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Compression tests</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Magnesium alloys</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Metal forming</topic><topic>Other topics in materials science</topic><topic>Physics</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Steady state</topic><topic>Strain analysis</topic><topic>Yield strength</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slooff, F. A.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Duszczyk, J.</creatorcontrib><creatorcontrib>Katgerman, L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slooff, F. A.</au><au>Zhou, J.</au><au>Duszczyk, J.</au><au>Katgerman, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>43</volume><issue>22</issue><spage>7165</spage><epage>7170</epage><pages>7165-7170</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>The commonly used hyperbolic sine constitutive equation for metal forming at elevated temperatures, with no strain incorporated, is in principle applicable only to deformation in the steady state. However, the actual deformation processes applied to magnesium alloys are mostly in the non-steady state. In the present research, the results of hot uniaxial compression tests of three wrought magnesium alloys covering wide ranges of temperatures and strain rates were used for a strain-dependent constitutive analysis. A strain-dependent constitutive relationship for these alloys was established. It appeared that the apparent activation energy for deformation decreased with increasing the alloying content in these alloys. The constitutive parameters obtained were used to predict flow stresses at given strains and the results were in good agreement with experimental measurements.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36039050</pmid><doi>10.1007/s10853-008-3014-2</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2008-11, Vol.43 (22), p.7165-7170
issn 0022-2461
1573-4803
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9403653
source SpringerNature Complete Journals
subjects Aluminum base alloys
Characterization and Evaluation of Materials
Classical Mechanics
Compression tests
Constitutive equations
Constitutive relationships
Cross-disciplinary physics: materials science
rheology
Crystallography and Scattering Methods
Deformation
Exact sciences and technology
High temperature
Magnesium alloys
Magnesium base alloys
Materials Science
Metal forming
Other topics in materials science
Physics
Polymer Sciences
Solid Mechanics
Steady state
Strain analysis
Yield strength
Zinc
title Strain-dependent constitutive analysis of three wrought Mg–Al–Zn alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain-dependent%20constitutive%20analysis%20of%20three%20wrought%20Mg%E2%80%93Al%E2%80%93Zn%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Slooff,%20F.%20A.&rft.date=2008-11-01&rft.volume=43&rft.issue=22&rft.spage=7165&rft.epage=7170&rft.pages=7165-7170&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-008-3014-2&rft_dat=%3Cproquest_pubme%3E36187318%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259537132&rft_id=info:pmid/36039050&rfr_iscdi=true