High-specificity protection against radiation-induced bone loss by a pulsed electromagnetic field

Radiotherapy increases tumor cure and survival rates; however, radiotherapy-induced bone damage remains a common issue for which effective countermeasures are lacking, especially considering tumor recurrence risks. We report a high-specificity protection technique based on noninvasive electromagneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-08, Vol.8 (34), p.eabq0222-eabq0222
Hauptverfasser: Yan, Zedong, Wang, Dan, Cai, Jing, Shen, Liangliang, Jiang, Maogang, Liu, Xiyu, Huang, Jinghui, Zhang, Yong, Luo, Erping, Jing, Da
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiotherapy increases tumor cure and survival rates; however, radiotherapy-induced bone damage remains a common issue for which effective countermeasures are lacking, especially considering tumor recurrence risks. We report a high-specificity protection technique based on noninvasive electromagnetic field (EMF). A unique pulsed-burst EMF (PEMF) at 15 Hz and 2 mT induces notable Ca 2+ oscillations with robust Ca 2+ spikes in osteoblasts in contrast to other waveforms. This waveform parameter substantially inhibits radiotherapy-induced bone loss by specifically modulating osteoblasts without affecting other bone cell types or tumor cells. Mechanistically, primary cilia are identified as major PEMF sensors in osteoblasts, and the differentiated ciliary expression dominates distinct PEMF sensitivity between osteoblasts and tumor cells. PEMF-induced unique Ca 2+ oscillations depend on interactions between ciliary polycystins-1/2 and endoplasmic reticulum, which activates the Ras/MAPK/AP-1 axis and subsequent DNA repair Ku70 transcription. Our study introduces a previously unidentified method against radiation-induced bone damage in a noninvasive, cost-effective, and highly specific manner. A highly-specific and noninvasive protection against radiation bone loss by PEMF via primary cilia-Ku70 cascades in osteoblasts.
ISSN:2375-2548
2375-2548
DOI:10.1126/sciadv.abq0222