A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure
We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various app...
Gespeichert in:
Veröffentlicht in: | Biometrics 2023-03, Vol.79 (1), p.437-448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 1 |
container_start_page | 437 |
container_title | Biometrics |
container_volume | 79 |
creator | Song, Xiao Chao, Edward C. Wang, Ching‐Yun |
description | We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial. |
doi_str_mv | 10.1111/biom.13595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9399755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585924371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3715-6ddb8ab003a3fd02953f29d301234b1a7a761f90d5e7d833594cf25732642ce03</originalsourceid><addsrcrecordid>eNp9kktuFDEQhi0EIpOBDQdAltigSB38aHePN0gh4hEpKBuQ2Fluu5px1G03tjthsuIIXIUrcRI8MyECFnjjKtenX3-VC6EnlBzTcl50LozHlAsp7qEFFTWtSM3IfbQghDQVr-mnA3SY0mVJpSDsITrgdSPrhrMF-nGC0xhCXoPFJsQIJpcolRCwnqYYtFnjPkRcwinE7ILXA17rGx1twmOwMOBrl9d4dMkMOiXXuyJgSxYhu5ud7JWOTmdI2Hk7m_LUbTDEGOLPb99N8FmPzuu8Q312fg5zwtmNUMoWJvAWfMbwdQppjvAIPej1kODx7b1EH9-8_nD6rjq_eHt2enJeGd5SUTXWdivdEcI17y1hUvCeScsJZbzuqG5129BeEiugtSteplebnomWs6ZmBghfopd73WnuRrCmeIh6UFN0o44bFbRTf1e8W6vP4UpJLmUrRBF4fisQw5cZUlbbGcEwaA-lQ8XESkhWF7cFffYPehnmWCZdqHYlGZWyWFyioz1lYkgpQn9nhhK13QS13QS124QCP_3T_h36--sLQPfAtRtg8x8p9ers4v1e9Bcjm8a5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789219983</pqid></control><display><type>article</type><title>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><creator>Song, Xiao ; Chao, Edward C. ; Wang, Ching‐Yun</creator><creatorcontrib>Song, Xiao ; Chao, Edward C. ; Wang, Ching‐Yun</creatorcontrib><description>We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13595</identifier><identifier>PMID: 34694632</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Calibration ; Categories ; Computer Simulation ; Continuity (mathematics) ; corrected score ; Dependent variables ; Discretization ; Error analysis ; Hazards ; HIV ; Human immunodeficiency virus ; Normality ; Proportional Hazards Models ; regression calibration ; smoothing ; Statistical models ; survival ; Survival Analysis ; Time dependence ; Variables</subject><ispartof>Biometrics, 2023-03, Vol.79 (1), p.437-448</ispartof><rights>2021 The International Biometric Society.</rights><rights>2023 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3715-6ddb8ab003a3fd02953f29d301234b1a7a761f90d5e7d833594cf25732642ce03</cites><orcidid>0000-0002-1883-333X ; 0000-0001-8191-7352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13595$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13595$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34694632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Xiao</creatorcontrib><creatorcontrib>Chao, Edward C.</creatorcontrib><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><title>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.</description><subject>Calibration</subject><subject>Categories</subject><subject>Computer Simulation</subject><subject>Continuity (mathematics)</subject><subject>corrected score</subject><subject>Dependent variables</subject><subject>Discretization</subject><subject>Error analysis</subject><subject>Hazards</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Normality</subject><subject>Proportional Hazards Models</subject><subject>regression calibration</subject><subject>smoothing</subject><subject>Statistical models</subject><subject>survival</subject><subject>Survival Analysis</subject><subject>Time dependence</subject><subject>Variables</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kktuFDEQhi0EIpOBDQdAltigSB38aHePN0gh4hEpKBuQ2Fluu5px1G03tjthsuIIXIUrcRI8MyECFnjjKtenX3-VC6EnlBzTcl50LozHlAsp7qEFFTWtSM3IfbQghDQVr-mnA3SY0mVJpSDsITrgdSPrhrMF-nGC0xhCXoPFJsQIJpcolRCwnqYYtFnjPkRcwinE7ILXA17rGx1twmOwMOBrl9d4dMkMOiXXuyJgSxYhu5ud7JWOTmdI2Hk7m_LUbTDEGOLPb99N8FmPzuu8Q312fg5zwtmNUMoWJvAWfMbwdQppjvAIPej1kODx7b1EH9-8_nD6rjq_eHt2enJeGd5SUTXWdivdEcI17y1hUvCeScsJZbzuqG5129BeEiugtSteplebnomWs6ZmBghfopd73WnuRrCmeIh6UFN0o44bFbRTf1e8W6vP4UpJLmUrRBF4fisQw5cZUlbbGcEwaA-lQ8XESkhWF7cFffYPehnmWCZdqHYlGZWyWFyioz1lYkgpQn9nhhK13QS13QS124QCP_3T_h36--sLQPfAtRtg8x8p9ers4v1e9Bcjm8a5</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Song, Xiao</creator><creator>Chao, Edward C.</creator><creator>Wang, Ching‐Yun</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid></search><sort><creationdate>202303</creationdate><title>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</title><author>Song, Xiao ; Chao, Edward C. ; Wang, Ching‐Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3715-6ddb8ab003a3fd02953f29d301234b1a7a761f90d5e7d833594cf25732642ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Categories</topic><topic>Computer Simulation</topic><topic>Continuity (mathematics)</topic><topic>corrected score</topic><topic>Dependent variables</topic><topic>Discretization</topic><topic>Error analysis</topic><topic>Hazards</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Normality</topic><topic>Proportional Hazards Models</topic><topic>regression calibration</topic><topic>smoothing</topic><topic>Statistical models</topic><topic>survival</topic><topic>Survival Analysis</topic><topic>Time dependence</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xiao</creatorcontrib><creatorcontrib>Chao, Edward C.</creatorcontrib><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xiao</au><au>Chao, Edward C.</au><au>Wang, Ching‐Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2023-03</date><risdate>2023</risdate><volume>79</volume><issue>1</issue><spage>437</spage><epage>448</epage><pages>437-448</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34694632</pmid><doi>10.1111/biom.13595</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2023-03, Vol.79 (1), p.437-448 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9399755 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Oxford Academic Journals (OUP) |
subjects | Calibration Categories Computer Simulation Continuity (mathematics) corrected score Dependent variables Discretization Error analysis Hazards HIV Human immunodeficiency virus Normality Proportional Hazards Models regression calibration smoothing Statistical models survival Survival Analysis Time dependence Variables |
title | A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smoothed%20corrected%20score%20approach%20for%20proportional%20hazards%20model%20with%20misclassified%20discretized%20covariates%20induced%20by%20error%E2%80%90contaminated%20continuous%20time%E2%80%90dependent%20exposure&rft.jtitle=Biometrics&rft.au=Song,%20Xiao&rft.date=2023-03&rft.volume=79&rft.issue=1&rft.spage=437&rft.epage=448&rft.pages=437-448&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13595&rft_dat=%3Cproquest_pubme%3E2585924371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789219983&rft_id=info:pmid/34694632&rfr_iscdi=true |