A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure

We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2023-03, Vol.79 (1), p.437-448
Hauptverfasser: Song, Xiao, Chao, Edward C., Wang, Ching‐Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 1
container_start_page 437
container_title Biometrics
container_volume 79
creator Song, Xiao
Chao, Edward C.
Wang, Ching‐Yun
description We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.
doi_str_mv 10.1111/biom.13595
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9399755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585924371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3715-6ddb8ab003a3fd02953f29d301234b1a7a761f90d5e7d833594cf25732642ce03</originalsourceid><addsrcrecordid>eNp9kktuFDEQhi0EIpOBDQdAltigSB38aHePN0gh4hEpKBuQ2Fluu5px1G03tjthsuIIXIUrcRI8MyECFnjjKtenX3-VC6EnlBzTcl50LozHlAsp7qEFFTWtSM3IfbQghDQVr-mnA3SY0mVJpSDsITrgdSPrhrMF-nGC0xhCXoPFJsQIJpcolRCwnqYYtFnjPkRcwinE7ILXA17rGx1twmOwMOBrl9d4dMkMOiXXuyJgSxYhu5ud7JWOTmdI2Hk7m_LUbTDEGOLPb99N8FmPzuu8Q312fg5zwtmNUMoWJvAWfMbwdQppjvAIPej1kODx7b1EH9-8_nD6rjq_eHt2enJeGd5SUTXWdivdEcI17y1hUvCeScsJZbzuqG5129BeEiugtSteplebnomWs6ZmBghfopd73WnuRrCmeIh6UFN0o44bFbRTf1e8W6vP4UpJLmUrRBF4fisQw5cZUlbbGcEwaA-lQ8XESkhWF7cFffYPehnmWCZdqHYlGZWyWFyioz1lYkgpQn9nhhK13QS13QS124QCP_3T_h36--sLQPfAtRtg8x8p9ers4v1e9Bcjm8a5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789219983</pqid></control><display><type>article</type><title>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><creator>Song, Xiao ; Chao, Edward C. ; Wang, Ching‐Yun</creator><creatorcontrib>Song, Xiao ; Chao, Edward C. ; Wang, Ching‐Yun</creatorcontrib><description>We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13595</identifier><identifier>PMID: 34694632</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Calibration ; Categories ; Computer Simulation ; Continuity (mathematics) ; corrected score ; Dependent variables ; Discretization ; Error analysis ; Hazards ; HIV ; Human immunodeficiency virus ; Normality ; Proportional Hazards Models ; regression calibration ; smoothing ; Statistical models ; survival ; Survival Analysis ; Time dependence ; Variables</subject><ispartof>Biometrics, 2023-03, Vol.79 (1), p.437-448</ispartof><rights>2021 The International Biometric Society.</rights><rights>2023 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3715-6ddb8ab003a3fd02953f29d301234b1a7a761f90d5e7d833594cf25732642ce03</cites><orcidid>0000-0002-1883-333X ; 0000-0001-8191-7352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13595$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13595$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34694632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Xiao</creatorcontrib><creatorcontrib>Chao, Edward C.</creatorcontrib><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><title>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.</description><subject>Calibration</subject><subject>Categories</subject><subject>Computer Simulation</subject><subject>Continuity (mathematics)</subject><subject>corrected score</subject><subject>Dependent variables</subject><subject>Discretization</subject><subject>Error analysis</subject><subject>Hazards</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Normality</subject><subject>Proportional Hazards Models</subject><subject>regression calibration</subject><subject>smoothing</subject><subject>Statistical models</subject><subject>survival</subject><subject>Survival Analysis</subject><subject>Time dependence</subject><subject>Variables</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kktuFDEQhi0EIpOBDQdAltigSB38aHePN0gh4hEpKBuQ2Fluu5px1G03tjthsuIIXIUrcRI8MyECFnjjKtenX3-VC6EnlBzTcl50LozHlAsp7qEFFTWtSM3IfbQghDQVr-mnA3SY0mVJpSDsITrgdSPrhrMF-nGC0xhCXoPFJsQIJpcolRCwnqYYtFnjPkRcwinE7ILXA17rGx1twmOwMOBrl9d4dMkMOiXXuyJgSxYhu5ud7JWOTmdI2Hk7m_LUbTDEGOLPb99N8FmPzuu8Q312fg5zwtmNUMoWJvAWfMbwdQppjvAIPej1kODx7b1EH9-8_nD6rjq_eHt2enJeGd5SUTXWdivdEcI17y1hUvCeScsJZbzuqG5129BeEiugtSteplebnomWs6ZmBghfopd73WnuRrCmeIh6UFN0o44bFbRTf1e8W6vP4UpJLmUrRBF4fisQw5cZUlbbGcEwaA-lQ8XESkhWF7cFffYPehnmWCZdqHYlGZWyWFyioz1lYkgpQn9nhhK13QS13QS124QCP_3T_h36--sLQPfAtRtg8x8p9ers4v1e9Bcjm8a5</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Song, Xiao</creator><creator>Chao, Edward C.</creator><creator>Wang, Ching‐Yun</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid></search><sort><creationdate>202303</creationdate><title>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</title><author>Song, Xiao ; Chao, Edward C. ; Wang, Ching‐Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3715-6ddb8ab003a3fd02953f29d301234b1a7a761f90d5e7d833594cf25732642ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Categories</topic><topic>Computer Simulation</topic><topic>Continuity (mathematics)</topic><topic>corrected score</topic><topic>Dependent variables</topic><topic>Discretization</topic><topic>Error analysis</topic><topic>Hazards</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Normality</topic><topic>Proportional Hazards Models</topic><topic>regression calibration</topic><topic>smoothing</topic><topic>Statistical models</topic><topic>survival</topic><topic>Survival Analysis</topic><topic>Time dependence</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xiao</creatorcontrib><creatorcontrib>Chao, Edward C.</creatorcontrib><creatorcontrib>Wang, Ching‐Yun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xiao</au><au>Chao, Edward C.</au><au>Wang, Ching‐Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2023-03</date><risdate>2023</risdate><volume>79</volume><issue>1</issue><spage>437</spage><epage>448</epage><pages>437-448</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>We consider the proportional hazards model in which the covariates include the discretized categories of a continuous time‐dependent exposure variable measured with error. Naively ignoring the measurement error in the analysis may cause biased estimation and erroneous inference. Although various approaches have been proposed to deal with measurement error when the hazard depends linearly on the time‐dependent variable, it has not yet been investigated how to correct when the hazard depends on the discretized categories of the time‐dependent variable. To fill this gap in the literature, we propose a smoothed corrected score approach based on approximation of the discretized categories after smoothing the indicator function. The consistency and asymptotic normality of the proposed estimator are established. The observation times of the time‐dependent variable are allowed to be informative. For comparison, we also extend to this setting two approximate approaches, the regression calibration and the risk‐set regression calibration. The methods are assessed by simulation studies and by application to data from an HIV clinical trial.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34694632</pmid><doi>10.1111/biom.13595</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1883-333X</orcidid><orcidid>https://orcid.org/0000-0001-8191-7352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2023-03, Vol.79 (1), p.437-448
issn 0006-341X
1541-0420
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9399755
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Oxford Academic Journals (OUP)
subjects Calibration
Categories
Computer Simulation
Continuity (mathematics)
corrected score
Dependent variables
Discretization
Error analysis
Hazards
HIV
Human immunodeficiency virus
Normality
Proportional Hazards Models
regression calibration
smoothing
Statistical models
survival
Survival Analysis
Time dependence
Variables
title A smoothed corrected score approach for proportional hazards model with misclassified discretized covariates induced by error‐contaminated continuous time‐dependent exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smoothed%20corrected%20score%20approach%20for%20proportional%20hazards%20model%20with%20misclassified%20discretized%20covariates%20induced%20by%20error%E2%80%90contaminated%20continuous%20time%E2%80%90dependent%20exposure&rft.jtitle=Biometrics&rft.au=Song,%20Xiao&rft.date=2023-03&rft.volume=79&rft.issue=1&rft.spage=437&rft.epage=448&rft.pages=437-448&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13595&rft_dat=%3Cproquest_pubme%3E2585924371%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789219983&rft_id=info:pmid/34694632&rfr_iscdi=true