Redox‐engineering enhances maize thermotolerance and grain yield in the field

Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2022-09, Vol.20 (9), p.1819-1832
Hauptverfasser: Sprague, Stuart A., Tamang, Tej Man, Steiner, Trevor, Wu, Qingyu, Hu, Ying, Kakeshpour, Tayebeh, Park, Jungeun, Yang, Jian, Peng, Zhao, Bergkamp, Blake, Somayanda, Impa, Peterson, Morgan, Oliveira Garcia, Ely, Hao, Yangfan, St. Amand, Paul, Bai, Guihua, Nakata, Paul A., Rieu, Ivo, Jackson, David P., Cheng, Ninghui, Valent, Barbara, Hirschi, Kendal D., Jagadish, SV Krishna, Liu, Sanzhen, White, Frank F., Park, Sunghun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1832
container_issue 9
container_start_page 1819
container_title Plant biotechnology journal
container_volume 20
creator Sprague, Stuart A.
Tamang, Tej Man
Steiner, Trevor
Wu, Qingyu
Hu, Ying
Kakeshpour, Tayebeh
Park, Jungeun
Yang, Jian
Peng, Zhao
Bergkamp, Blake
Somayanda, Impa
Peterson, Morgan
Oliveira Garcia, Ely
Hao, Yangfan
St. Amand, Paul
Bai, Guihua
Nakata, Paul A.
Rieu, Ivo
Jackson, David P.
Cheng, Ninghui
Valent, Barbara
Hirschi, Kendal D.
Jagadish, SV Krishna
Liu, Sanzhen
White, Frank F.
Park, Sunghun
description Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.
doi_str_mv 10.1111/pbi.13866
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9398381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741578730</galeid><sourcerecordid>A741578730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</originalsourceid><addsrcrecordid>eNp1kc1uEzEQxy1ERUvhwAuglbjAIam_7VyQSgW0UqUiBGfLa89uXO3awU4K4cQj8Iw8CU63jQAJ-zDjmd_8x6NB6BnBc1LPyaoNc8K0lA_QEeFSzZQU9OHe5_wQPS7lGmNKpJCP0CET1UrOjtDVR_Dp268fPyH2IQLkEPsG4tJGB6UZbfgOzXoJeUzrNEDehRsbfdNnG2KzDTD4pjoVabrd4wk66OxQ4OmdPUaf3739dHY-u7x6f3F2ejlzXFM5c7U77VyHudKSMJDE6ZZ6wKLVFAtMsaQ1K5UXHFjbcu9a8CC1Fh1vqWTH6PWku9q0I3gHcZ3tYFY5jDZvTbLB_J2JYWn6dGMWbKGZJlXg5Z1ATl82UNZmDMXBMNgIaVMMlYoxIZSkFX3xD3qdNjnW8QxVWHBOFkpUaj5RvR3AhNil2tfV62EMLkXoQo2fKk6E0orhWvBqKnA5lZKh2_-eYLPbq6l7Nbd7rezzP8fdk_eLrMDJBHytXbb_VzIf3lxMkr8B9EGtnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705441975</pqid></control><display><type>article</type><title>Redox‐engineering enhances maize thermotolerance and grain yield in the field</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Sprague, Stuart A. ; Tamang, Tej Man ; Steiner, Trevor ; Wu, Qingyu ; Hu, Ying ; Kakeshpour, Tayebeh ; Park, Jungeun ; Yang, Jian ; Peng, Zhao ; Bergkamp, Blake ; Somayanda, Impa ; Peterson, Morgan ; Oliveira Garcia, Ely ; Hao, Yangfan ; St. Amand, Paul ; Bai, Guihua ; Nakata, Paul A. ; Rieu, Ivo ; Jackson, David P. ; Cheng, Ninghui ; Valent, Barbara ; Hirschi, Kendal D. ; Jagadish, SV Krishna ; Liu, Sanzhen ; White, Frank F. ; Park, Sunghun</creator><creatorcontrib>Sprague, Stuart A. ; Tamang, Tej Man ; Steiner, Trevor ; Wu, Qingyu ; Hu, Ying ; Kakeshpour, Tayebeh ; Park, Jungeun ; Yang, Jian ; Peng, Zhao ; Bergkamp, Blake ; Somayanda, Impa ; Peterson, Morgan ; Oliveira Garcia, Ely ; Hao, Yangfan ; St. Amand, Paul ; Bai, Guihua ; Nakata, Paul A. ; Rieu, Ivo ; Jackson, David P. ; Cheng, Ninghui ; Valent, Barbara ; Hirschi, Kendal D. ; Jagadish, SV Krishna ; Liu, Sanzhen ; White, Frank F. ; Park, Sunghun</creatorcontrib><description>Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13866</identifier><identifier>PMID: 35656643</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Abiotic stress ; Abortion ; Agricultural production ; Analysis ; Arabidopsis - genetics ; Arabidopsis thaliana ; Corn ; Crop yield ; Crop yields ; Crops ; Ectopic expression ; Edible Grain - genetics ; Enzymes ; Fertility ; field conditions ; Gene expression ; Genetic engineering ; Genomes ; Germination ; Glutaredoxin ; Grain ; Grain industry ; Heat ; Heat stress ; Heat tolerance ; maize ; Ovules ; Oxidation-Reduction ; Plant reproduction ; Pollen ; Proteins ; reproductive stage ; Stress distribution ; Temperature tolerance ; Thermotolerance - genetics ; Zea mays - genetics</subject><ispartof>Plant biotechnology journal, 2022-09, Vol.20 (9), p.1819-1832</ispartof><rights>2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</citedby><cites>FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</cites><orcidid>0000-0003-1944-0463 ; 0000-0003-3064-2445 ; 0000-0003-0636-0376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13866$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13866$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35656643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sprague, Stuart A.</creatorcontrib><creatorcontrib>Tamang, Tej Man</creatorcontrib><creatorcontrib>Steiner, Trevor</creatorcontrib><creatorcontrib>Wu, Qingyu</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Kakeshpour, Tayebeh</creatorcontrib><creatorcontrib>Park, Jungeun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Peng, Zhao</creatorcontrib><creatorcontrib>Bergkamp, Blake</creatorcontrib><creatorcontrib>Somayanda, Impa</creatorcontrib><creatorcontrib>Peterson, Morgan</creatorcontrib><creatorcontrib>Oliveira Garcia, Ely</creatorcontrib><creatorcontrib>Hao, Yangfan</creatorcontrib><creatorcontrib>St. Amand, Paul</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><creatorcontrib>Nakata, Paul A.</creatorcontrib><creatorcontrib>Rieu, Ivo</creatorcontrib><creatorcontrib>Jackson, David P.</creatorcontrib><creatorcontrib>Cheng, Ninghui</creatorcontrib><creatorcontrib>Valent, Barbara</creatorcontrib><creatorcontrib>Hirschi, Kendal D.</creatorcontrib><creatorcontrib>Jagadish, SV Krishna</creatorcontrib><creatorcontrib>Liu, Sanzhen</creatorcontrib><creatorcontrib>White, Frank F.</creatorcontrib><creatorcontrib>Park, Sunghun</creatorcontrib><title>Redox‐engineering enhances maize thermotolerance and grain yield in the field</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.</description><subject>Abiotic stress</subject><subject>Abortion</subject><subject>Agricultural production</subject><subject>Analysis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Corn</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Ectopic expression</subject><subject>Edible Grain - genetics</subject><subject>Enzymes</subject><subject>Fertility</subject><subject>field conditions</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Germination</subject><subject>Glutaredoxin</subject><subject>Grain</subject><subject>Grain industry</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>maize</subject><subject>Ovules</subject><subject>Oxidation-Reduction</subject><subject>Plant reproduction</subject><subject>Pollen</subject><subject>Proteins</subject><subject>reproductive stage</subject><subject>Stress distribution</subject><subject>Temperature tolerance</subject><subject>Thermotolerance - genetics</subject><subject>Zea mays - genetics</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1uEzEQxy1ERUvhwAuglbjAIam_7VyQSgW0UqUiBGfLa89uXO3awU4K4cQj8Iw8CU63jQAJ-zDjmd_8x6NB6BnBc1LPyaoNc8K0lA_QEeFSzZQU9OHe5_wQPS7lGmNKpJCP0CET1UrOjtDVR_Dp268fPyH2IQLkEPsG4tJGB6UZbfgOzXoJeUzrNEDehRsbfdNnG2KzDTD4pjoVabrd4wk66OxQ4OmdPUaf3739dHY-u7x6f3F2ejlzXFM5c7U77VyHudKSMJDE6ZZ6wKLVFAtMsaQ1K5UXHFjbcu9a8CC1Fh1vqWTH6PWku9q0I3gHcZ3tYFY5jDZvTbLB_J2JYWn6dGMWbKGZJlXg5Z1ATl82UNZmDMXBMNgIaVMMlYoxIZSkFX3xD3qdNjnW8QxVWHBOFkpUaj5RvR3AhNil2tfV62EMLkXoQo2fKk6E0orhWvBqKnA5lZKh2_-eYLPbq6l7Nbd7rezzP8fdk_eLrMDJBHytXbb_VzIf3lxMkr8B9EGtnQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Sprague, Stuart A.</creator><creator>Tamang, Tej Man</creator><creator>Steiner, Trevor</creator><creator>Wu, Qingyu</creator><creator>Hu, Ying</creator><creator>Kakeshpour, Tayebeh</creator><creator>Park, Jungeun</creator><creator>Yang, Jian</creator><creator>Peng, Zhao</creator><creator>Bergkamp, Blake</creator><creator>Somayanda, Impa</creator><creator>Peterson, Morgan</creator><creator>Oliveira Garcia, Ely</creator><creator>Hao, Yangfan</creator><creator>St. Amand, Paul</creator><creator>Bai, Guihua</creator><creator>Nakata, Paul A.</creator><creator>Rieu, Ivo</creator><creator>Jackson, David P.</creator><creator>Cheng, Ninghui</creator><creator>Valent, Barbara</creator><creator>Hirschi, Kendal D.</creator><creator>Jagadish, SV Krishna</creator><creator>Liu, Sanzhen</creator><creator>White, Frank F.</creator><creator>Park, Sunghun</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1944-0463</orcidid><orcidid>https://orcid.org/0000-0003-3064-2445</orcidid><orcidid>https://orcid.org/0000-0003-0636-0376</orcidid></search><sort><creationdate>202209</creationdate><title>Redox‐engineering enhances maize thermotolerance and grain yield in the field</title><author>Sprague, Stuart A. ; Tamang, Tej Man ; Steiner, Trevor ; Wu, Qingyu ; Hu, Ying ; Kakeshpour, Tayebeh ; Park, Jungeun ; Yang, Jian ; Peng, Zhao ; Bergkamp, Blake ; Somayanda, Impa ; Peterson, Morgan ; Oliveira Garcia, Ely ; Hao, Yangfan ; St. Amand, Paul ; Bai, Guihua ; Nakata, Paul A. ; Rieu, Ivo ; Jackson, David P. ; Cheng, Ninghui ; Valent, Barbara ; Hirschi, Kendal D. ; Jagadish, SV Krishna ; Liu, Sanzhen ; White, Frank F. ; Park, Sunghun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abiotic stress</topic><topic>Abortion</topic><topic>Agricultural production</topic><topic>Analysis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Corn</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Ectopic expression</topic><topic>Edible Grain - genetics</topic><topic>Enzymes</topic><topic>Fertility</topic><topic>field conditions</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Germination</topic><topic>Glutaredoxin</topic><topic>Grain</topic><topic>Grain industry</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>maize</topic><topic>Ovules</topic><topic>Oxidation-Reduction</topic><topic>Plant reproduction</topic><topic>Pollen</topic><topic>Proteins</topic><topic>reproductive stage</topic><topic>Stress distribution</topic><topic>Temperature tolerance</topic><topic>Thermotolerance - genetics</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprague, Stuart A.</creatorcontrib><creatorcontrib>Tamang, Tej Man</creatorcontrib><creatorcontrib>Steiner, Trevor</creatorcontrib><creatorcontrib>Wu, Qingyu</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Kakeshpour, Tayebeh</creatorcontrib><creatorcontrib>Park, Jungeun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Peng, Zhao</creatorcontrib><creatorcontrib>Bergkamp, Blake</creatorcontrib><creatorcontrib>Somayanda, Impa</creatorcontrib><creatorcontrib>Peterson, Morgan</creatorcontrib><creatorcontrib>Oliveira Garcia, Ely</creatorcontrib><creatorcontrib>Hao, Yangfan</creatorcontrib><creatorcontrib>St. Amand, Paul</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><creatorcontrib>Nakata, Paul A.</creatorcontrib><creatorcontrib>Rieu, Ivo</creatorcontrib><creatorcontrib>Jackson, David P.</creatorcontrib><creatorcontrib>Cheng, Ninghui</creatorcontrib><creatorcontrib>Valent, Barbara</creatorcontrib><creatorcontrib>Hirschi, Kendal D.</creatorcontrib><creatorcontrib>Jagadish, SV Krishna</creatorcontrib><creatorcontrib>Liu, Sanzhen</creatorcontrib><creatorcontrib>White, Frank F.</creatorcontrib><creatorcontrib>Park, Sunghun</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprague, Stuart A.</au><au>Tamang, Tej Man</au><au>Steiner, Trevor</au><au>Wu, Qingyu</au><au>Hu, Ying</au><au>Kakeshpour, Tayebeh</au><au>Park, Jungeun</au><au>Yang, Jian</au><au>Peng, Zhao</au><au>Bergkamp, Blake</au><au>Somayanda, Impa</au><au>Peterson, Morgan</au><au>Oliveira Garcia, Ely</au><au>Hao, Yangfan</au><au>St. Amand, Paul</au><au>Bai, Guihua</au><au>Nakata, Paul A.</au><au>Rieu, Ivo</au><au>Jackson, David P.</au><au>Cheng, Ninghui</au><au>Valent, Barbara</au><au>Hirschi, Kendal D.</au><au>Jagadish, SV Krishna</au><au>Liu, Sanzhen</au><au>White, Frank F.</au><au>Park, Sunghun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox‐engineering enhances maize thermotolerance and grain yield in the field</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2022-09</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>1819</spage><epage>1832</epage><pages>1819-1832</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35656643</pmid><doi>10.1111/pbi.13866</doi><tpages>1832</tpages><orcidid>https://orcid.org/0000-0003-1944-0463</orcidid><orcidid>https://orcid.org/0000-0003-3064-2445</orcidid><orcidid>https://orcid.org/0000-0003-0636-0376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2022-09, Vol.20 (9), p.1819-1832
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9398381
source MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Abiotic stress
Abortion
Agricultural production
Analysis
Arabidopsis - genetics
Arabidopsis thaliana
Corn
Crop yield
Crop yields
Crops
Ectopic expression
Edible Grain - genetics
Enzymes
Fertility
field conditions
Gene expression
Genetic engineering
Genomes
Germination
Glutaredoxin
Grain
Grain industry
Heat
Heat stress
Heat tolerance
maize
Ovules
Oxidation-Reduction
Plant reproduction
Pollen
Proteins
reproductive stage
Stress distribution
Temperature tolerance
Thermotolerance - genetics
Zea mays - genetics
title Redox‐engineering enhances maize thermotolerance and grain yield in the field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%E2%80%90engineering%20enhances%20maize%20thermotolerance%20and%20grain%20yield%20in%20the%20field&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Sprague,%20Stuart%20A.&rft.date=2022-09&rft.volume=20&rft.issue=9&rft.spage=1819&rft.epage=1832&rft.pages=1819-1832&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13866&rft_dat=%3Cgale_pubme%3EA741578730%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705441975&rft_id=info:pmid/35656643&rft_galeid=A741578730&rfr_iscdi=true