Redox‐engineering enhances maize thermotolerance and grain yield in the field
Summary Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2022-09, Vol.20 (9), p.1819-1832 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1832 |
---|---|
container_issue | 9 |
container_start_page | 1819 |
container_title | Plant biotechnology journal |
container_volume | 20 |
creator | Sprague, Stuart A. Tamang, Tej Man Steiner, Trevor Wu, Qingyu Hu, Ying Kakeshpour, Tayebeh Park, Jungeun Yang, Jian Peng, Zhao Bergkamp, Blake Somayanda, Impa Peterson, Morgan Oliveira Garcia, Ely Hao, Yangfan St. Amand, Paul Bai, Guihua Nakata, Paul A. Rieu, Ivo Jackson, David P. Cheng, Ninghui Valent, Barbara Hirschi, Kendal D. Jagadish, SV Krishna Liu, Sanzhen White, Frank F. Park, Sunghun |
description | Summary
Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment. |
doi_str_mv | 10.1111/pbi.13866 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9398381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741578730</galeid><sourcerecordid>A741578730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</originalsourceid><addsrcrecordid>eNp1kc1uEzEQxy1ERUvhwAuglbjAIam_7VyQSgW0UqUiBGfLa89uXO3awU4K4cQj8Iw8CU63jQAJ-zDjmd_8x6NB6BnBc1LPyaoNc8K0lA_QEeFSzZQU9OHe5_wQPS7lGmNKpJCP0CET1UrOjtDVR_Dp268fPyH2IQLkEPsG4tJGB6UZbfgOzXoJeUzrNEDehRsbfdNnG2KzDTD4pjoVabrd4wk66OxQ4OmdPUaf3739dHY-u7x6f3F2ejlzXFM5c7U77VyHudKSMJDE6ZZ6wKLVFAtMsaQ1K5UXHFjbcu9a8CC1Fh1vqWTH6PWku9q0I3gHcZ3tYFY5jDZvTbLB_J2JYWn6dGMWbKGZJlXg5Z1ATl82UNZmDMXBMNgIaVMMlYoxIZSkFX3xD3qdNjnW8QxVWHBOFkpUaj5RvR3AhNil2tfV62EMLkXoQo2fKk6E0orhWvBqKnA5lZKh2_-eYLPbq6l7Nbd7rezzP8fdk_eLrMDJBHytXbb_VzIf3lxMkr8B9EGtnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705441975</pqid></control><display><type>article</type><title>Redox‐engineering enhances maize thermotolerance and grain yield in the field</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Sprague, Stuart A. ; Tamang, Tej Man ; Steiner, Trevor ; Wu, Qingyu ; Hu, Ying ; Kakeshpour, Tayebeh ; Park, Jungeun ; Yang, Jian ; Peng, Zhao ; Bergkamp, Blake ; Somayanda, Impa ; Peterson, Morgan ; Oliveira Garcia, Ely ; Hao, Yangfan ; St. Amand, Paul ; Bai, Guihua ; Nakata, Paul A. ; Rieu, Ivo ; Jackson, David P. ; Cheng, Ninghui ; Valent, Barbara ; Hirschi, Kendal D. ; Jagadish, SV Krishna ; Liu, Sanzhen ; White, Frank F. ; Park, Sunghun</creator><creatorcontrib>Sprague, Stuart A. ; Tamang, Tej Man ; Steiner, Trevor ; Wu, Qingyu ; Hu, Ying ; Kakeshpour, Tayebeh ; Park, Jungeun ; Yang, Jian ; Peng, Zhao ; Bergkamp, Blake ; Somayanda, Impa ; Peterson, Morgan ; Oliveira Garcia, Ely ; Hao, Yangfan ; St. Amand, Paul ; Bai, Guihua ; Nakata, Paul A. ; Rieu, Ivo ; Jackson, David P. ; Cheng, Ninghui ; Valent, Barbara ; Hirschi, Kendal D. ; Jagadish, SV Krishna ; Liu, Sanzhen ; White, Frank F. ; Park, Sunghun</creatorcontrib><description>Summary
Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.13866</identifier><identifier>PMID: 35656643</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Abiotic stress ; Abortion ; Agricultural production ; Analysis ; Arabidopsis - genetics ; Arabidopsis thaliana ; Corn ; Crop yield ; Crop yields ; Crops ; Ectopic expression ; Edible Grain - genetics ; Enzymes ; Fertility ; field conditions ; Gene expression ; Genetic engineering ; Genomes ; Germination ; Glutaredoxin ; Grain ; Grain industry ; Heat ; Heat stress ; Heat tolerance ; maize ; Ovules ; Oxidation-Reduction ; Plant reproduction ; Pollen ; Proteins ; reproductive stage ; Stress distribution ; Temperature tolerance ; Thermotolerance - genetics ; Zea mays - genetics</subject><ispartof>Plant biotechnology journal, 2022-09, Vol.20 (9), p.1819-1832</ispartof><rights>2022 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</citedby><cites>FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</cites><orcidid>0000-0003-1944-0463 ; 0000-0003-3064-2445 ; 0000-0003-0636-0376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.13866$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.13866$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35656643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sprague, Stuart A.</creatorcontrib><creatorcontrib>Tamang, Tej Man</creatorcontrib><creatorcontrib>Steiner, Trevor</creatorcontrib><creatorcontrib>Wu, Qingyu</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Kakeshpour, Tayebeh</creatorcontrib><creatorcontrib>Park, Jungeun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Peng, Zhao</creatorcontrib><creatorcontrib>Bergkamp, Blake</creatorcontrib><creatorcontrib>Somayanda, Impa</creatorcontrib><creatorcontrib>Peterson, Morgan</creatorcontrib><creatorcontrib>Oliveira Garcia, Ely</creatorcontrib><creatorcontrib>Hao, Yangfan</creatorcontrib><creatorcontrib>St. Amand, Paul</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><creatorcontrib>Nakata, Paul A.</creatorcontrib><creatorcontrib>Rieu, Ivo</creatorcontrib><creatorcontrib>Jackson, David P.</creatorcontrib><creatorcontrib>Cheng, Ninghui</creatorcontrib><creatorcontrib>Valent, Barbara</creatorcontrib><creatorcontrib>Hirschi, Kendal D.</creatorcontrib><creatorcontrib>Jagadish, SV Krishna</creatorcontrib><creatorcontrib>Liu, Sanzhen</creatorcontrib><creatorcontrib>White, Frank F.</creatorcontrib><creatorcontrib>Park, Sunghun</creatorcontrib><title>Redox‐engineering enhances maize thermotolerance and grain yield in the field</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.</description><subject>Abiotic stress</subject><subject>Abortion</subject><subject>Agricultural production</subject><subject>Analysis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Corn</subject><subject>Crop yield</subject><subject>Crop yields</subject><subject>Crops</subject><subject>Ectopic expression</subject><subject>Edible Grain - genetics</subject><subject>Enzymes</subject><subject>Fertility</subject><subject>field conditions</subject><subject>Gene expression</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Germination</subject><subject>Glutaredoxin</subject><subject>Grain</subject><subject>Grain industry</subject><subject>Heat</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>maize</subject><subject>Ovules</subject><subject>Oxidation-Reduction</subject><subject>Plant reproduction</subject><subject>Pollen</subject><subject>Proteins</subject><subject>reproductive stage</subject><subject>Stress distribution</subject><subject>Temperature tolerance</subject><subject>Thermotolerance - genetics</subject><subject>Zea mays - genetics</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1uEzEQxy1ERUvhwAuglbjAIam_7VyQSgW0UqUiBGfLa89uXO3awU4K4cQj8Iw8CU63jQAJ-zDjmd_8x6NB6BnBc1LPyaoNc8K0lA_QEeFSzZQU9OHe5_wQPS7lGmNKpJCP0CET1UrOjtDVR_Dp268fPyH2IQLkEPsG4tJGB6UZbfgOzXoJeUzrNEDehRsbfdNnG2KzDTD4pjoVabrd4wk66OxQ4OmdPUaf3739dHY-u7x6f3F2ejlzXFM5c7U77VyHudKSMJDE6ZZ6wKLVFAtMsaQ1K5UXHFjbcu9a8CC1Fh1vqWTH6PWku9q0I3gHcZ3tYFY5jDZvTbLB_J2JYWn6dGMWbKGZJlXg5Z1ATl82UNZmDMXBMNgIaVMMlYoxIZSkFX3xD3qdNjnW8QxVWHBOFkpUaj5RvR3AhNil2tfV62EMLkXoQo2fKk6E0orhWvBqKnA5lZKh2_-eYLPbq6l7Nbd7rezzP8fdk_eLrMDJBHytXbb_VzIf3lxMkr8B9EGtnQ</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Sprague, Stuart A.</creator><creator>Tamang, Tej Man</creator><creator>Steiner, Trevor</creator><creator>Wu, Qingyu</creator><creator>Hu, Ying</creator><creator>Kakeshpour, Tayebeh</creator><creator>Park, Jungeun</creator><creator>Yang, Jian</creator><creator>Peng, Zhao</creator><creator>Bergkamp, Blake</creator><creator>Somayanda, Impa</creator><creator>Peterson, Morgan</creator><creator>Oliveira Garcia, Ely</creator><creator>Hao, Yangfan</creator><creator>St. Amand, Paul</creator><creator>Bai, Guihua</creator><creator>Nakata, Paul A.</creator><creator>Rieu, Ivo</creator><creator>Jackson, David P.</creator><creator>Cheng, Ninghui</creator><creator>Valent, Barbara</creator><creator>Hirschi, Kendal D.</creator><creator>Jagadish, SV Krishna</creator><creator>Liu, Sanzhen</creator><creator>White, Frank F.</creator><creator>Park, Sunghun</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1944-0463</orcidid><orcidid>https://orcid.org/0000-0003-3064-2445</orcidid><orcidid>https://orcid.org/0000-0003-0636-0376</orcidid></search><sort><creationdate>202209</creationdate><title>Redox‐engineering enhances maize thermotolerance and grain yield in the field</title><author>Sprague, Stuart A. ; Tamang, Tej Man ; Steiner, Trevor ; Wu, Qingyu ; Hu, Ying ; Kakeshpour, Tayebeh ; Park, Jungeun ; Yang, Jian ; Peng, Zhao ; Bergkamp, Blake ; Somayanda, Impa ; Peterson, Morgan ; Oliveira Garcia, Ely ; Hao, Yangfan ; St. Amand, Paul ; Bai, Guihua ; Nakata, Paul A. ; Rieu, Ivo ; Jackson, David P. ; Cheng, Ninghui ; Valent, Barbara ; Hirschi, Kendal D. ; Jagadish, SV Krishna ; Liu, Sanzhen ; White, Frank F. ; Park, Sunghun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4826-c6642fcf0478613e61c8b2de05b820502062cf067d54e3bb4dcbede6885f4b263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abiotic stress</topic><topic>Abortion</topic><topic>Agricultural production</topic><topic>Analysis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Corn</topic><topic>Crop yield</topic><topic>Crop yields</topic><topic>Crops</topic><topic>Ectopic expression</topic><topic>Edible Grain - genetics</topic><topic>Enzymes</topic><topic>Fertility</topic><topic>field conditions</topic><topic>Gene expression</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Germination</topic><topic>Glutaredoxin</topic><topic>Grain</topic><topic>Grain industry</topic><topic>Heat</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>maize</topic><topic>Ovules</topic><topic>Oxidation-Reduction</topic><topic>Plant reproduction</topic><topic>Pollen</topic><topic>Proteins</topic><topic>reproductive stage</topic><topic>Stress distribution</topic><topic>Temperature tolerance</topic><topic>Thermotolerance - genetics</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprague, Stuart A.</creatorcontrib><creatorcontrib>Tamang, Tej Man</creatorcontrib><creatorcontrib>Steiner, Trevor</creatorcontrib><creatorcontrib>Wu, Qingyu</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Kakeshpour, Tayebeh</creatorcontrib><creatorcontrib>Park, Jungeun</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Peng, Zhao</creatorcontrib><creatorcontrib>Bergkamp, Blake</creatorcontrib><creatorcontrib>Somayanda, Impa</creatorcontrib><creatorcontrib>Peterson, Morgan</creatorcontrib><creatorcontrib>Oliveira Garcia, Ely</creatorcontrib><creatorcontrib>Hao, Yangfan</creatorcontrib><creatorcontrib>St. Amand, Paul</creatorcontrib><creatorcontrib>Bai, Guihua</creatorcontrib><creatorcontrib>Nakata, Paul A.</creatorcontrib><creatorcontrib>Rieu, Ivo</creatorcontrib><creatorcontrib>Jackson, David P.</creatorcontrib><creatorcontrib>Cheng, Ninghui</creatorcontrib><creatorcontrib>Valent, Barbara</creatorcontrib><creatorcontrib>Hirschi, Kendal D.</creatorcontrib><creatorcontrib>Jagadish, SV Krishna</creatorcontrib><creatorcontrib>Liu, Sanzhen</creatorcontrib><creatorcontrib>White, Frank F.</creatorcontrib><creatorcontrib>Park, Sunghun</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprague, Stuart A.</au><au>Tamang, Tej Man</au><au>Steiner, Trevor</au><au>Wu, Qingyu</au><au>Hu, Ying</au><au>Kakeshpour, Tayebeh</au><au>Park, Jungeun</au><au>Yang, Jian</au><au>Peng, Zhao</au><au>Bergkamp, Blake</au><au>Somayanda, Impa</au><au>Peterson, Morgan</au><au>Oliveira Garcia, Ely</au><au>Hao, Yangfan</au><au>St. Amand, Paul</au><au>Bai, Guihua</au><au>Nakata, Paul A.</au><au>Rieu, Ivo</au><au>Jackson, David P.</au><au>Cheng, Ninghui</au><au>Valent, Barbara</au><au>Hirschi, Kendal D.</au><au>Jagadish, SV Krishna</au><au>Liu, Sanzhen</au><au>White, Frank F.</au><au>Park, Sunghun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox‐engineering enhances maize thermotolerance and grain yield in the field</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2022-09</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>1819</spage><epage>1832</epage><pages>1819-1832</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary
Increasing populations and temperatures are expected to escalate food demands beyond production capacities, and the development of maize lines with better performance under heat stress is desirable. Here, we report that constitutive ectopic expression of a heterologous glutaredoxin S17 from Arabidopsis thaliana (AtGRXS17) can provide thermotolerance in maize through enhanced chaperone activity and modulation of heat stress‐associated gene expression. The thermotolerant maize lines had increased protection against protein damage and yielded a sixfold increase in grain production in comparison to the non‐transgenic counterparts under heat stress field conditions. The maize lines also displayed thermotolerance in the reproductive stages, resulting in improved pollen germination and the higher fidelity of fertilized ovules under heat stress conditions. Our results present a robust and simple strategy for meeting rising yield demands in maize and, possibly, other crop species in a warming global environment.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>35656643</pmid><doi>10.1111/pbi.13866</doi><tpages>1832</tpages><orcidid>https://orcid.org/0000-0003-1944-0463</orcidid><orcidid>https://orcid.org/0000-0003-3064-2445</orcidid><orcidid>https://orcid.org/0000-0003-0636-0376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2022-09, Vol.20 (9), p.1819-1832 |
issn | 1467-7644 1467-7652 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9398381 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Abiotic stress Abortion Agricultural production Analysis Arabidopsis - genetics Arabidopsis thaliana Corn Crop yield Crop yields Crops Ectopic expression Edible Grain - genetics Enzymes Fertility field conditions Gene expression Genetic engineering Genomes Germination Glutaredoxin Grain Grain industry Heat Heat stress Heat tolerance maize Ovules Oxidation-Reduction Plant reproduction Pollen Proteins reproductive stage Stress distribution Temperature tolerance Thermotolerance - genetics Zea mays - genetics |
title | Redox‐engineering enhances maize thermotolerance and grain yield in the field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%E2%80%90engineering%20enhances%20maize%20thermotolerance%20and%20grain%20yield%20in%20the%20field&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Sprague,%20Stuart%20A.&rft.date=2022-09&rft.volume=20&rft.issue=9&rft.spage=1819&rft.epage=1832&rft.pages=1819-1832&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.13866&rft_dat=%3Cgale_pubme%3EA741578730%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705441975&rft_id=info:pmid/35656643&rft_galeid=A741578730&rfr_iscdi=true |