Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers

The efficacy of antibody-based therapeutics depends on successful drug delivery into solid tumors; therefore, there is a clinical need to measure intratumoral antibody distribution. This study aims to develop and validate an imaging and computation platform to directly quantify and predict antibody...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2020-06, Vol.26 (11), p.2582-2594
Hauptverfasser: Lu, Guolan, Fakurnejad, Shayan, Martin, Brock A, van den Berg, Nynke S, van Keulen, Stan, Nishio, Naoki, Zhu, Ashley J, Chirita, Stefania U, Zhou, Quan, Gao, Rebecca W, Kong, Christina S, Fischbein, Nancy, Penta, Mrudula, Colevas, Alexander D, Rosenthal, Eben L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2594
container_issue 11
container_start_page 2582
container_title Clinical cancer research
container_volume 26
creator Lu, Guolan
Fakurnejad, Shayan
Martin, Brock A
van den Berg, Nynke S
van Keulen, Stan
Nishio, Naoki
Zhu, Ashley J
Chirita, Stefania U
Zhou, Quan
Gao, Rebecca W
Kong, Christina S
Fischbein, Nancy
Penta, Mrudula
Colevas, Alexander D
Rosenthal, Eben L
description The efficacy of antibody-based therapeutics depends on successful drug delivery into solid tumors; therefore, there is a clinical need to measure intratumoral antibody distribution. This study aims to develop and validate an imaging and computation platform to directly quantify and predict antibody delivery into human head and neck cancers in a clinical study. Twenty-four patients received systemic infusion of a near-infrared fluorescence-labeled therapeutic antibody followed by surgical tumor resection. A computational platform was developed to quantify the extent of heterogeneity of intratumoral antibody distribution. Both univariate and multivariate regression analyses were used to select the most predictive tumor biological factors for antibody delivery. Quantitative image features from the pretreatment MRI were extracted and correlated with fluorescence imaging of antibody delivery. This study not only confirmed heterogeneous intratumoral antibody distribution in-line with many preclinical reports, but also quantified the extent of interpatient, intertumor, and intratumor heterogeneity of antibody delivery. This study demonstrated the strong predictive value of tumor size for intratumoral antibody accumulation and its significant impact on antibody distribution in both primary tumor and lymph node metastasis. Furthermore, this study established the feasibility of using contrast-enhanced MRI to predict antibody delivery. This study provides a clinically translatable platform to measure antibody delivery into solid tumors and yields valuable insight into clinically relevant antibody tumor penetration, with implications in the selection of patients amenable to antibody therapy and the design of more effective dosing strategies.
doi_str_mv 10.1158/1078-0432.CCR-19-3717
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9398035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2345505108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-4dca59258bd37827d2c27984375aad50db4227a4579141ba14ff9eae5e66956c3</originalsourceid><addsrcrecordid>eNpVUctOHDEQtFAQr-QTEvmYy4BfPR5fIqHhsUgIUETOlsfuBSezno09g7R_z6x4CE7dUldXV1cR8p2zY86hOeFMNxVTUhy37e-Km0pqrnfIAQfQlRQ1fJn7N8w-OSzlL2Nccab2yL7kpmGqhgNydZcxRD_G9EDvHzG7NU5j9PQ0jbEbwoaeYR-fMG9oTONAF9PKJbpAF6hLgd6g_0dblzzm8pXsLl1f8NtrPSJ_Ls7v20V1fXt51Z5eV15xPlYqeAdGQNMFqRuhg_BCm0ZJDc4FYKFTQminQJtZbee4Wi4NOgSsawO1l0fk1wvveupWGDymMbvernNcubyxg4v28yTFR_swPFkj56clzAQ_Xwny8H_CMtpVLB773iUcpmKFVAAMOGtmKLxAfR5Kybh8P8OZ3cZgtxbbrcV2jsFyY7cxzHs_Pmp833rzXT4DHreDuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2345505108</pqid></control><display><type>article</type><title>Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers</title><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lu, Guolan ; Fakurnejad, Shayan ; Martin, Brock A ; van den Berg, Nynke S ; van Keulen, Stan ; Nishio, Naoki ; Zhu, Ashley J ; Chirita, Stefania U ; Zhou, Quan ; Gao, Rebecca W ; Kong, Christina S ; Fischbein, Nancy ; Penta, Mrudula ; Colevas, Alexander D ; Rosenthal, Eben L</creator><creatorcontrib>Lu, Guolan ; Fakurnejad, Shayan ; Martin, Brock A ; van den Berg, Nynke S ; van Keulen, Stan ; Nishio, Naoki ; Zhu, Ashley J ; Chirita, Stefania U ; Zhou, Quan ; Gao, Rebecca W ; Kong, Christina S ; Fischbein, Nancy ; Penta, Mrudula ; Colevas, Alexander D ; Rosenthal, Eben L</creatorcontrib><description>The efficacy of antibody-based therapeutics depends on successful drug delivery into solid tumors; therefore, there is a clinical need to measure intratumoral antibody distribution. This study aims to develop and validate an imaging and computation platform to directly quantify and predict antibody delivery into human head and neck cancers in a clinical study. Twenty-four patients received systemic infusion of a near-infrared fluorescence-labeled therapeutic antibody followed by surgical tumor resection. A computational platform was developed to quantify the extent of heterogeneity of intratumoral antibody distribution. Both univariate and multivariate regression analyses were used to select the most predictive tumor biological factors for antibody delivery. Quantitative image features from the pretreatment MRI were extracted and correlated with fluorescence imaging of antibody delivery. This study not only confirmed heterogeneous intratumoral antibody distribution in-line with many preclinical reports, but also quantified the extent of interpatient, intertumor, and intratumor heterogeneity of antibody delivery. This study demonstrated the strong predictive value of tumor size for intratumoral antibody accumulation and its significant impact on antibody distribution in both primary tumor and lymph node metastasis. Furthermore, this study established the feasibility of using contrast-enhanced MRI to predict antibody delivery. This study provides a clinically translatable platform to measure antibody delivery into solid tumors and yields valuable insight into clinically relevant antibody tumor penetration, with implications in the selection of patients amenable to antibody therapy and the design of more effective dosing strategies.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-19-3717</identifier><identifier>PMID: 31980465</identifier><language>eng</language><publisher>United States</publisher><ispartof>Clinical cancer research, 2020-06, Vol.26 (11), p.2582-2594</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-4dca59258bd37827d2c27984375aad50db4227a4579141ba14ff9eae5e66956c3</citedby><cites>FETCH-LOGICAL-c411t-4dca59258bd37827d2c27984375aad50db4227a4579141ba14ff9eae5e66956c3</cites><orcidid>0000-0002-1174-7041 ; 0000-0002-3315-2647 ; 0000-0003-1495-0376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31980465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Guolan</creatorcontrib><creatorcontrib>Fakurnejad, Shayan</creatorcontrib><creatorcontrib>Martin, Brock A</creatorcontrib><creatorcontrib>van den Berg, Nynke S</creatorcontrib><creatorcontrib>van Keulen, Stan</creatorcontrib><creatorcontrib>Nishio, Naoki</creatorcontrib><creatorcontrib>Zhu, Ashley J</creatorcontrib><creatorcontrib>Chirita, Stefania U</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Gao, Rebecca W</creatorcontrib><creatorcontrib>Kong, Christina S</creatorcontrib><creatorcontrib>Fischbein, Nancy</creatorcontrib><creatorcontrib>Penta, Mrudula</creatorcontrib><creatorcontrib>Colevas, Alexander D</creatorcontrib><creatorcontrib>Rosenthal, Eben L</creatorcontrib><title>Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>The efficacy of antibody-based therapeutics depends on successful drug delivery into solid tumors; therefore, there is a clinical need to measure intratumoral antibody distribution. This study aims to develop and validate an imaging and computation platform to directly quantify and predict antibody delivery into human head and neck cancers in a clinical study. Twenty-four patients received systemic infusion of a near-infrared fluorescence-labeled therapeutic antibody followed by surgical tumor resection. A computational platform was developed to quantify the extent of heterogeneity of intratumoral antibody distribution. Both univariate and multivariate regression analyses were used to select the most predictive tumor biological factors for antibody delivery. Quantitative image features from the pretreatment MRI were extracted and correlated with fluorescence imaging of antibody delivery. This study not only confirmed heterogeneous intratumoral antibody distribution in-line with many preclinical reports, but also quantified the extent of interpatient, intertumor, and intratumor heterogeneity of antibody delivery. This study demonstrated the strong predictive value of tumor size for intratumoral antibody accumulation and its significant impact on antibody distribution in both primary tumor and lymph node metastasis. Furthermore, this study established the feasibility of using contrast-enhanced MRI to predict antibody delivery. This study provides a clinically translatable platform to measure antibody delivery into solid tumors and yields valuable insight into clinically relevant antibody tumor penetration, with implications in the selection of patients amenable to antibody therapy and the design of more effective dosing strategies.</description><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUctOHDEQtFAQr-QTEvmYy4BfPR5fIqHhsUgIUETOlsfuBSezno09g7R_z6x4CE7dUldXV1cR8p2zY86hOeFMNxVTUhy37e-Km0pqrnfIAQfQlRQ1fJn7N8w-OSzlL2Nccab2yL7kpmGqhgNydZcxRD_G9EDvHzG7NU5j9PQ0jbEbwoaeYR-fMG9oTONAF9PKJbpAF6hLgd6g_0dblzzm8pXsLl1f8NtrPSJ_Ls7v20V1fXt51Z5eV15xPlYqeAdGQNMFqRuhg_BCm0ZJDc4FYKFTQminQJtZbee4Wi4NOgSsawO1l0fk1wvveupWGDymMbvernNcubyxg4v28yTFR_swPFkj56clzAQ_Xwny8H_CMtpVLB773iUcpmKFVAAMOGtmKLxAfR5Kybh8P8OZ3cZgtxbbrcV2jsFyY7cxzHs_Pmp833rzXT4DHreDuw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Lu, Guolan</creator><creator>Fakurnejad, Shayan</creator><creator>Martin, Brock A</creator><creator>van den Berg, Nynke S</creator><creator>van Keulen, Stan</creator><creator>Nishio, Naoki</creator><creator>Zhu, Ashley J</creator><creator>Chirita, Stefania U</creator><creator>Zhou, Quan</creator><creator>Gao, Rebecca W</creator><creator>Kong, Christina S</creator><creator>Fischbein, Nancy</creator><creator>Penta, Mrudula</creator><creator>Colevas, Alexander D</creator><creator>Rosenthal, Eben L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1174-7041</orcidid><orcidid>https://orcid.org/0000-0002-3315-2647</orcidid><orcidid>https://orcid.org/0000-0003-1495-0376</orcidid></search><sort><creationdate>20200601</creationdate><title>Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers</title><author>Lu, Guolan ; Fakurnejad, Shayan ; Martin, Brock A ; van den Berg, Nynke S ; van Keulen, Stan ; Nishio, Naoki ; Zhu, Ashley J ; Chirita, Stefania U ; Zhou, Quan ; Gao, Rebecca W ; Kong, Christina S ; Fischbein, Nancy ; Penta, Mrudula ; Colevas, Alexander D ; Rosenthal, Eben L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-4dca59258bd37827d2c27984375aad50db4227a4579141ba14ff9eae5e66956c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Guolan</creatorcontrib><creatorcontrib>Fakurnejad, Shayan</creatorcontrib><creatorcontrib>Martin, Brock A</creatorcontrib><creatorcontrib>van den Berg, Nynke S</creatorcontrib><creatorcontrib>van Keulen, Stan</creatorcontrib><creatorcontrib>Nishio, Naoki</creatorcontrib><creatorcontrib>Zhu, Ashley J</creatorcontrib><creatorcontrib>Chirita, Stefania U</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Gao, Rebecca W</creatorcontrib><creatorcontrib>Kong, Christina S</creatorcontrib><creatorcontrib>Fischbein, Nancy</creatorcontrib><creatorcontrib>Penta, Mrudula</creatorcontrib><creatorcontrib>Colevas, Alexander D</creatorcontrib><creatorcontrib>Rosenthal, Eben L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Guolan</au><au>Fakurnejad, Shayan</au><au>Martin, Brock A</au><au>van den Berg, Nynke S</au><au>van Keulen, Stan</au><au>Nishio, Naoki</au><au>Zhu, Ashley J</au><au>Chirita, Stefania U</au><au>Zhou, Quan</au><au>Gao, Rebecca W</au><au>Kong, Christina S</au><au>Fischbein, Nancy</au><au>Penta, Mrudula</au><au>Colevas, Alexander D</au><au>Rosenthal, Eben L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>26</volume><issue>11</issue><spage>2582</spage><epage>2594</epage><pages>2582-2594</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>The efficacy of antibody-based therapeutics depends on successful drug delivery into solid tumors; therefore, there is a clinical need to measure intratumoral antibody distribution. This study aims to develop and validate an imaging and computation platform to directly quantify and predict antibody delivery into human head and neck cancers in a clinical study. Twenty-four patients received systemic infusion of a near-infrared fluorescence-labeled therapeutic antibody followed by surgical tumor resection. A computational platform was developed to quantify the extent of heterogeneity of intratumoral antibody distribution. Both univariate and multivariate regression analyses were used to select the most predictive tumor biological factors for antibody delivery. Quantitative image features from the pretreatment MRI were extracted and correlated with fluorescence imaging of antibody delivery. This study not only confirmed heterogeneous intratumoral antibody distribution in-line with many preclinical reports, but also quantified the extent of interpatient, intertumor, and intratumor heterogeneity of antibody delivery. This study demonstrated the strong predictive value of tumor size for intratumoral antibody accumulation and its significant impact on antibody distribution in both primary tumor and lymph node metastasis. Furthermore, this study established the feasibility of using contrast-enhanced MRI to predict antibody delivery. This study provides a clinically translatable platform to measure antibody delivery into solid tumors and yields valuable insight into clinically relevant antibody tumor penetration, with implications in the selection of patients amenable to antibody therapy and the design of more effective dosing strategies.</abstract><cop>United States</cop><pmid>31980465</pmid><doi>10.1158/1078-0432.CCR-19-3717</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1174-7041</orcidid><orcidid>https://orcid.org/0000-0002-3315-2647</orcidid><orcidid>https://orcid.org/0000-0003-1495-0376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2020-06, Vol.26 (11), p.2582-2594
issn 1078-0432
1557-3265
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9398035
source American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Predicting Therapeutic Antibody Delivery into Human Head and Neck Cancers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Therapeutic%20Antibody%20Delivery%20into%20Human%20Head%20and%20Neck%20Cancers&rft.jtitle=Clinical%20cancer%20research&rft.au=Lu,%20Guolan&rft.date=2020-06-01&rft.volume=26&rft.issue=11&rft.spage=2582&rft.epage=2594&rft.pages=2582-2594&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-19-3717&rft_dat=%3Cproquest_pubme%3E2345505108%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2345505108&rft_id=info:pmid/31980465&rfr_iscdi=true