Transplantation of Mesenchymal Stem Cells Attenuates Acute Liver Failure in Mice via an Interleukin-4-dependent Switch to the M2 Macrophage Anti-inflammatory Phenotype
Background and AimsTransplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This...
Gespeichert in:
Veröffentlicht in: | Journal of clinical and translational hepatology 2022-08, Vol.10 (4), p.669-679 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 679 |
---|---|
container_issue | 4 |
container_start_page | 669 |
container_title | Journal of clinical and translational hepatology |
container_volume | 10 |
creator | Wang, Jinglin Ding, Haoran Zhou, Jingchao Xia, Senzhe Shi, Xiaolei Ren, Haozhen |
description | Background and AimsTransplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This study explored the effects of MSCs on hepatic macrophages and the Wnt signaling pathway in ALF. MethodsMSCs were isolated from BM aspirates of C57BL/6J mice, and transplanted in mice with ALF induced by D-galactosamine (D-Gal). The proliferation of hepatocytes was assayed by immunohistochemical (IHC) staining of Ki-67 and proliferating cell nuclear antigen (PCNA). The levels of key proteins in the Wnt signaling pathway were assayed by western blotting and cytokines were determined enzyme-linked immunosorbent assays (ELISAs). A macrophage polarization assay characterized the M1/M2 ratio. The potential role of interleukin-4 (IL-4) in the biological activity of MSCs was determined by silencing of IL-4. ResultsTransplantation of allogeneic MSCs significantly attenuated D-Gal-induced hepatic inflammation and promoted liver regeneration. MSC transplantation significantly promoted a phenotypic switch from proinflamatory M1 macrophages to anti-inflammatory M2 macrophages, leading to significant Wnt-3a induction and activation of the Wnt signaling pathway in mice with D-Gal-induced ALF. Of the paracrine factors secreted by MSCs (G-CSF, IL-6, IL-1 beta, IL-4, and IL-17A), IL-4 was specifically induced following transplantation in the ALF model mice. The silencing of IL-4 significantly abrogated the phenotypic switch to M2 macrophages and the protective effects of MSCs in both the ALF model mice and a co-culture model in an IL-4 dependent manner. ConclusionsIn vivo and in vitro studies showed that MSCs ameliorated ALF through an IL-4-dependent macrophage switch toward the M2 anti-inflammatory phenotype. The findings may have clinical implications in that overexpression of IL-4 may enhance the therapeutic effects of allogeneic MSC transplantation in the treatment of ALF. |
doi_str_mv | 10.14218/JCTH.2021.00127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9396329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2709917230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-754ea5e884193e316aaa45e93a56e65dafcf0e251cca5d89539b30b34bc8de2e3</originalsourceid><addsrcrecordid>eNpVkUuL3DAQhE1IyC6bveeoYy6e6GHZ1iUwDNkXMySwk7PokdtrJbLkSPKE-UX5m_E-WMipC7qobuorio-MrljFWfv5brO_WXHK2YpSxps3xTkXjJZty9TbRXMuS9owdVZcpvSTLh7JaK3o--JM1LTmvFXnxd99BJ8mBz5DtsGT0JMdJvRmOI3gyH3GkWzQuUTWOaOfIeMizZyRbO0RI7kC6-aIxHqyswbJ0QIBT259xuhw_mV9WZUdTug79Jnc_7HZDCQHkgckO052YGKYBnhAsvbZltb3DsYRcogn8n1AH_Jpwg_Fux5cwsuXeVH8uPq639yU22_Xt5v1tjSiEblsZIUgsW0rpgQKVgNAJVEJkDXWsoPe9BS5ZMaA7FolhToIehDVwbQdchQXxZfn3Gk-jNiZ5eUITk_RjhBPOoDV_2-8HfRDOGolVC24WgI-vQTE8HvGlPVok1kKBI9hTpo3VCnWcEEXK322LgWkFLF_PcOofkKsHxHrR8T6CbH4B_WjnAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709917230</pqid></control><display><type>article</type><title>Transplantation of Mesenchymal Stem Cells Attenuates Acute Liver Failure in Mice via an Interleukin-4-dependent Switch to the M2 Macrophage Anti-inflammatory Phenotype</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wang, Jinglin ; Ding, Haoran ; Zhou, Jingchao ; Xia, Senzhe ; Shi, Xiaolei ; Ren, Haozhen</creator><creatorcontrib>Wang, Jinglin ; Ding, Haoran ; Zhou, Jingchao ; Xia, Senzhe ; Shi, Xiaolei ; Ren, Haozhen</creatorcontrib><description>Background and AimsTransplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This study explored the effects of MSCs on hepatic macrophages and the Wnt signaling pathway in ALF. MethodsMSCs were isolated from BM aspirates of C57BL/6J mice, and transplanted in mice with ALF induced by D-galactosamine (D-Gal). The proliferation of hepatocytes was assayed by immunohistochemical (IHC) staining of Ki-67 and proliferating cell nuclear antigen (PCNA). The levels of key proteins in the Wnt signaling pathway were assayed by western blotting and cytokines were determined enzyme-linked immunosorbent assays (ELISAs). A macrophage polarization assay characterized the M1/M2 ratio. The potential role of interleukin-4 (IL-4) in the biological activity of MSCs was determined by silencing of IL-4. ResultsTransplantation of allogeneic MSCs significantly attenuated D-Gal-induced hepatic inflammation and promoted liver regeneration. MSC transplantation significantly promoted a phenotypic switch from proinflamatory M1 macrophages to anti-inflammatory M2 macrophages, leading to significant Wnt-3a induction and activation of the Wnt signaling pathway in mice with D-Gal-induced ALF. Of the paracrine factors secreted by MSCs (G-CSF, IL-6, IL-1 beta, IL-4, and IL-17A), IL-4 was specifically induced following transplantation in the ALF model mice. The silencing of IL-4 significantly abrogated the phenotypic switch to M2 macrophages and the protective effects of MSCs in both the ALF model mice and a co-culture model in an IL-4 dependent manner. ConclusionsIn vivo and in vitro studies showed that MSCs ameliorated ALF through an IL-4-dependent macrophage switch toward the M2 anti-inflammatory phenotype. The findings may have clinical implications in that overexpression of IL-4 may enhance the therapeutic effects of allogeneic MSC transplantation in the treatment of ALF.</description><identifier>ISSN: 2225-0719</identifier><identifier>EISSN: 2310-8819</identifier><identifier>DOI: 10.14218/JCTH.2021.00127</identifier><identifier>PMID: 36062289</identifier><language>eng</language><publisher>XIA & HE Publishing Inc</publisher><subject>Original</subject><ispartof>Journal of clinical and translational hepatology, 2022-08, Vol.10 (4), p.669-679</ispartof><rights>2022 Authors. 2022</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-754ea5e884193e316aaa45e93a56e65dafcf0e251cca5d89539b30b34bc8de2e3</citedby><cites>FETCH-LOGICAL-c373t-754ea5e884193e316aaa45e93a56e65dafcf0e251cca5d89539b30b34bc8de2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396329/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396329/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Wang, Jinglin</creatorcontrib><creatorcontrib>Ding, Haoran</creatorcontrib><creatorcontrib>Zhou, Jingchao</creatorcontrib><creatorcontrib>Xia, Senzhe</creatorcontrib><creatorcontrib>Shi, Xiaolei</creatorcontrib><creatorcontrib>Ren, Haozhen</creatorcontrib><title>Transplantation of Mesenchymal Stem Cells Attenuates Acute Liver Failure in Mice via an Interleukin-4-dependent Switch to the M2 Macrophage Anti-inflammatory Phenotype</title><title>Journal of clinical and translational hepatology</title><description>Background and AimsTransplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This study explored the effects of MSCs on hepatic macrophages and the Wnt signaling pathway in ALF. MethodsMSCs were isolated from BM aspirates of C57BL/6J mice, and transplanted in mice with ALF induced by D-galactosamine (D-Gal). The proliferation of hepatocytes was assayed by immunohistochemical (IHC) staining of Ki-67 and proliferating cell nuclear antigen (PCNA). The levels of key proteins in the Wnt signaling pathway were assayed by western blotting and cytokines were determined enzyme-linked immunosorbent assays (ELISAs). A macrophage polarization assay characterized the M1/M2 ratio. The potential role of interleukin-4 (IL-4) in the biological activity of MSCs was determined by silencing of IL-4. ResultsTransplantation of allogeneic MSCs significantly attenuated D-Gal-induced hepatic inflammation and promoted liver regeneration. MSC transplantation significantly promoted a phenotypic switch from proinflamatory M1 macrophages to anti-inflammatory M2 macrophages, leading to significant Wnt-3a induction and activation of the Wnt signaling pathway in mice with D-Gal-induced ALF. Of the paracrine factors secreted by MSCs (G-CSF, IL-6, IL-1 beta, IL-4, and IL-17A), IL-4 was specifically induced following transplantation in the ALF model mice. The silencing of IL-4 significantly abrogated the phenotypic switch to M2 macrophages and the protective effects of MSCs in both the ALF model mice and a co-culture model in an IL-4 dependent manner. ConclusionsIn vivo and in vitro studies showed that MSCs ameliorated ALF through an IL-4-dependent macrophage switch toward the M2 anti-inflammatory phenotype. The findings may have clinical implications in that overexpression of IL-4 may enhance the therapeutic effects of allogeneic MSC transplantation in the treatment of ALF.</description><subject>Original</subject><issn>2225-0719</issn><issn>2310-8819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkUuL3DAQhE1IyC6bveeoYy6e6GHZ1iUwDNkXMySwk7PokdtrJbLkSPKE-UX5m_E-WMipC7qobuorio-MrljFWfv5brO_WXHK2YpSxps3xTkXjJZty9TbRXMuS9owdVZcpvSTLh7JaK3o--JM1LTmvFXnxd99BJ8mBz5DtsGT0JMdJvRmOI3gyH3GkWzQuUTWOaOfIeMizZyRbO0RI7kC6-aIxHqyswbJ0QIBT259xuhw_mV9WZUdTug79Jnc_7HZDCQHkgckO052YGKYBnhAsvbZltb3DsYRcogn8n1AH_Jpwg_Fux5cwsuXeVH8uPq639yU22_Xt5v1tjSiEblsZIUgsW0rpgQKVgNAJVEJkDXWsoPe9BS5ZMaA7FolhToIehDVwbQdchQXxZfn3Gk-jNiZ5eUITk_RjhBPOoDV_2-8HfRDOGolVC24WgI-vQTE8HvGlPVok1kKBI9hTpo3VCnWcEEXK322LgWkFLF_PcOofkKsHxHrR8T6CbH4B_WjnAs</recordid><startdate>20220828</startdate><enddate>20220828</enddate><creator>Wang, Jinglin</creator><creator>Ding, Haoran</creator><creator>Zhou, Jingchao</creator><creator>Xia, Senzhe</creator><creator>Shi, Xiaolei</creator><creator>Ren, Haozhen</creator><general>XIA & HE Publishing Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220828</creationdate><title>Transplantation of Mesenchymal Stem Cells Attenuates Acute Liver Failure in Mice via an Interleukin-4-dependent Switch to the M2 Macrophage Anti-inflammatory Phenotype</title><author>Wang, Jinglin ; Ding, Haoran ; Zhou, Jingchao ; Xia, Senzhe ; Shi, Xiaolei ; Ren, Haozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-754ea5e884193e316aaa45e93a56e65dafcf0e251cca5d89539b30b34bc8de2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Original</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jinglin</creatorcontrib><creatorcontrib>Ding, Haoran</creatorcontrib><creatorcontrib>Zhou, Jingchao</creatorcontrib><creatorcontrib>Xia, Senzhe</creatorcontrib><creatorcontrib>Shi, Xiaolei</creatorcontrib><creatorcontrib>Ren, Haozhen</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of clinical and translational hepatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jinglin</au><au>Ding, Haoran</au><au>Zhou, Jingchao</au><au>Xia, Senzhe</au><au>Shi, Xiaolei</au><au>Ren, Haozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transplantation of Mesenchymal Stem Cells Attenuates Acute Liver Failure in Mice via an Interleukin-4-dependent Switch to the M2 Macrophage Anti-inflammatory Phenotype</atitle><jtitle>Journal of clinical and translational hepatology</jtitle><date>2022-08-28</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>669</spage><epage>679</epage><pages>669-679</pages><issn>2225-0719</issn><eissn>2310-8819</eissn><abstract>Background and AimsTransplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This study explored the effects of MSCs on hepatic macrophages and the Wnt signaling pathway in ALF. MethodsMSCs were isolated from BM aspirates of C57BL/6J mice, and transplanted in mice with ALF induced by D-galactosamine (D-Gal). The proliferation of hepatocytes was assayed by immunohistochemical (IHC) staining of Ki-67 and proliferating cell nuclear antigen (PCNA). The levels of key proteins in the Wnt signaling pathway were assayed by western blotting and cytokines were determined enzyme-linked immunosorbent assays (ELISAs). A macrophage polarization assay characterized the M1/M2 ratio. The potential role of interleukin-4 (IL-4) in the biological activity of MSCs was determined by silencing of IL-4. ResultsTransplantation of allogeneic MSCs significantly attenuated D-Gal-induced hepatic inflammation and promoted liver regeneration. MSC transplantation significantly promoted a phenotypic switch from proinflamatory M1 macrophages to anti-inflammatory M2 macrophages, leading to significant Wnt-3a induction and activation of the Wnt signaling pathway in mice with D-Gal-induced ALF. Of the paracrine factors secreted by MSCs (G-CSF, IL-6, IL-1 beta, IL-4, and IL-17A), IL-4 was specifically induced following transplantation in the ALF model mice. The silencing of IL-4 significantly abrogated the phenotypic switch to M2 macrophages and the protective effects of MSCs in both the ALF model mice and a co-culture model in an IL-4 dependent manner. ConclusionsIn vivo and in vitro studies showed that MSCs ameliorated ALF through an IL-4-dependent macrophage switch toward the M2 anti-inflammatory phenotype. The findings may have clinical implications in that overexpression of IL-4 may enhance the therapeutic effects of allogeneic MSC transplantation in the treatment of ALF.</abstract><pub>XIA & HE Publishing Inc</pub><pmid>36062289</pmid><doi>10.14218/JCTH.2021.00127</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2225-0719 |
ispartof | Journal of clinical and translational hepatology, 2022-08, Vol.10 (4), p.669-679 |
issn | 2225-0719 2310-8819 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9396329 |
source | PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Original |
title | Transplantation of Mesenchymal Stem Cells Attenuates Acute Liver Failure in Mice via an Interleukin-4-dependent Switch to the M2 Macrophage Anti-inflammatory Phenotype |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A40%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transplantation%20of%20Mesenchymal%20Stem%20Cells%20Attenuates%20Acute%20Liver%20Failure%20in%20Mice%20via%20an%20Interleukin-4-dependent%20Switch%20to%20the%20M2%20Macrophage%20Anti-inflammatory%20Phenotype&rft.jtitle=Journal%20of%20clinical%20and%20translational%20hepatology&rft.au=Wang,%20Jinglin&rft.date=2022-08-28&rft.volume=10&rft.issue=4&rft.spage=669&rft.epage=679&rft.pages=669-679&rft.issn=2225-0719&rft.eissn=2310-8819&rft_id=info:doi/10.14218/JCTH.2021.00127&rft_dat=%3Cproquest_pubme%3E2709917230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709917230&rft_id=info:pmid/36062289&rfr_iscdi=true |