Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces

Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2022-03, Vol.414 (7), p.2317-2331
Hauptverfasser: Baniasad, Maryam, Kim, Yongseok, Shaffer, Michael, Sabag-Daigle, Anice, Leleiwi, Ikaia, Daly, Rebecca A., Ahmer, Brian M. M., Wrighton, Kelly C., Wysocki, Vicki H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2331
container_issue 7
container_start_page 2317
container_title Analytical and bioanalytical chemistry
container_volume 414
creator Baniasad, Maryam
Kim, Yongseok
Shaffer, Michael
Sabag-Daigle, Anice
Leleiwi, Ikaia
Daly, Rebecca A.
Ahmer, Brian M. M.
Wrighton, Kelly C.
Wysocki, Vicki H.
description Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins. Graphical abstract
doi_str_mv 10.1007/s00216-022-03885-z
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9393048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695453479</galeid><sourcerecordid>A695453479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</originalsourceid><addsrcrecordid>eNqNkktv1TAQhSMEoqXwB1igSGzYpNiOPXE2SFXFS6rUDaytiTO-dZXYwc5F4v56XFIujwVCXtgaf-doPD5V9Zyzc85Y9zozJjg0TIiGtVqr5vCgOuXAdSNAsYfHsxQn1ZOcbxnjSnN4XJ20ijMAzk-rcL2sfvYHXH0MdXT1kuJKcfY21xnnZaJSoQXTBriYaj9SWL3z9qi5iXmtMYz1gHal5HHabHzItQ_1HPeZakeW8tPqkcMp07P7_az6_O7tp8sPzdX1-4-XF1eNVRLWBng3oB6sFp3iA0otENER73tApnGAoXNMcwuASkqrQcAIwvVSM2adHNuz6s3mu-yHmUZbOk44mSX5GdM3E9GbP2-CvzG7-NX0bd8yqYvBq3uDFL_sKa9m9tnSNGGg8hxTplomDoKz_0CF7JXQAgr68i_0Nu5TKJMoVCsBuk7dUecbtcOJjA8ulhZtWSOVf4mBnC_1C-iVVK3s-iIQm8CmmHMid3woZ-YuKmaLiilRMT-iYg5F9OL3ER0lP7NRgHYDcrkKO0q_mv2H7XftEsv7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634667756</pqid></control><display><type>article</type><title>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Baniasad, Maryam ; Kim, Yongseok ; Shaffer, Michael ; Sabag-Daigle, Anice ; Leleiwi, Ikaia ; Daly, Rebecca A. ; Ahmer, Brian M. M. ; Wrighton, Kelly C. ; Wysocki, Vicki H.</creator><creatorcontrib>Baniasad, Maryam ; Kim, Yongseok ; Shaffer, Michael ; Sabag-Daigle, Anice ; Leleiwi, Ikaia ; Daly, Rebecca A. ; Ahmer, Brian M. M. ; Wrighton, Kelly C. ; Wysocki, Vicki H.</creatorcontrib><description>Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins. Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-022-03885-z</identifier><identifier>PMID: 35106611</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actinobacteria ; Analysis ; Analytical Chemistry ; Animals ; Bacteria ; Bacterial proteins ; Bacterial Proteins - metabolism ; Beads ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Contaminants ; Digestive system ; Extraction (Chemistry) ; Feces ; Feces - microbiology ; Firmicutes ; Food Science ; Gastrointestinal Microbiome ; Gastrointestinal tract ; Gram-positive bacteria ; Intestinal microflora ; intestinal microorganisms ; Laboratory Medicine ; Lysis ; Mass spectrometry ; Methods ; Mice ; microbiome ; Microbiomes ; Microbiota ; Monitoring/Environmental Analysis ; Optimization ; Paper in Forefront ; Pollutant removal ; Proteins ; Proteobacteria ; Proteomics ; Proteomics - methods ; Reproducibility ; Reproducibility of Results ; Sample preparation ; Sodium dodecyl sulfate ; Sodium lauryl sulfate ; Urea ; Workflow</subject><ispartof>Analytical and bioanalytical chemistry, 2022-03, Vol.414 (7), p.2317-2331</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</citedby><cites>FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-022-03885-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-022-03885-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35106611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baniasad, Maryam</creatorcontrib><creatorcontrib>Kim, Yongseok</creatorcontrib><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Sabag-Daigle, Anice</creatorcontrib><creatorcontrib>Leleiwi, Ikaia</creatorcontrib><creatorcontrib>Daly, Rebecca A.</creatorcontrib><creatorcontrib>Ahmer, Brian M. M.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><title>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins. Graphical abstract</description><subject>Actinobacteria</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - metabolism</subject><subject>Beads</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Contaminants</subject><subject>Digestive system</subject><subject>Extraction (Chemistry)</subject><subject>Feces</subject><subject>Feces - microbiology</subject><subject>Firmicutes</subject><subject>Food Science</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>Gram-positive bacteria</subject><subject>Intestinal microflora</subject><subject>intestinal microorganisms</subject><subject>Laboratory Medicine</subject><subject>Lysis</subject><subject>Mass spectrometry</subject><subject>Methods</subject><subject>Mice</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Monitoring/Environmental Analysis</subject><subject>Optimization</subject><subject>Paper in Forefront</subject><subject>Pollutant removal</subject><subject>Proteins</subject><subject>Proteobacteria</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Sample preparation</subject><subject>Sodium dodecyl sulfate</subject><subject>Sodium lauryl sulfate</subject><subject>Urea</subject><subject>Workflow</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1TAQhSMEoqXwB1igSGzYpNiOPXE2SFXFS6rUDaytiTO-dZXYwc5F4v56XFIujwVCXtgaf-doPD5V9Zyzc85Y9zozJjg0TIiGtVqr5vCgOuXAdSNAsYfHsxQn1ZOcbxnjSnN4XJ20ijMAzk-rcL2sfvYHXH0MdXT1kuJKcfY21xnnZaJSoQXTBriYaj9SWL3z9qi5iXmtMYz1gHal5HHabHzItQ_1HPeZakeW8tPqkcMp07P7_az6_O7tp8sPzdX1-4-XF1eNVRLWBng3oB6sFp3iA0otENER73tApnGAoXNMcwuASkqrQcAIwvVSM2adHNuz6s3mu-yHmUZbOk44mSX5GdM3E9GbP2-CvzG7-NX0bd8yqYvBq3uDFL_sKa9m9tnSNGGg8hxTplomDoKz_0CF7JXQAgr68i_0Nu5TKJMoVCsBuk7dUecbtcOJjA8ulhZtWSOVf4mBnC_1C-iVVK3s-iIQm8CmmHMid3woZ-YuKmaLiilRMT-iYg5F9OL3ER0lP7NRgHYDcrkKO0q_mv2H7XftEsv7</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Baniasad, Maryam</creator><creator>Kim, Yongseok</creator><creator>Shaffer, Michael</creator><creator>Sabag-Daigle, Anice</creator><creator>Leleiwi, Ikaia</creator><creator>Daly, Rebecca A.</creator><creator>Ahmer, Brian M. M.</creator><creator>Wrighton, Kelly C.</creator><creator>Wysocki, Vicki H.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20220301</creationdate><title>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</title><author>Baniasad, Maryam ; Kim, Yongseok ; Shaffer, Michael ; Sabag-Daigle, Anice ; Leleiwi, Ikaia ; Daly, Rebecca A. ; Ahmer, Brian M. M. ; Wrighton, Kelly C. ; Wysocki, Vicki H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actinobacteria</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - metabolism</topic><topic>Beads</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Contaminants</topic><topic>Digestive system</topic><topic>Extraction (Chemistry)</topic><topic>Feces</topic><topic>Feces - microbiology</topic><topic>Firmicutes</topic><topic>Food Science</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>Gram-positive bacteria</topic><topic>Intestinal microflora</topic><topic>intestinal microorganisms</topic><topic>Laboratory Medicine</topic><topic>Lysis</topic><topic>Mass spectrometry</topic><topic>Methods</topic><topic>Mice</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Monitoring/Environmental Analysis</topic><topic>Optimization</topic><topic>Paper in Forefront</topic><topic>Pollutant removal</topic><topic>Proteins</topic><topic>Proteobacteria</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Sample preparation</topic><topic>Sodium dodecyl sulfate</topic><topic>Sodium lauryl sulfate</topic><topic>Urea</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baniasad, Maryam</creatorcontrib><creatorcontrib>Kim, Yongseok</creatorcontrib><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Sabag-Daigle, Anice</creatorcontrib><creatorcontrib>Leleiwi, Ikaia</creatorcontrib><creatorcontrib>Daly, Rebecca A.</creatorcontrib><creatorcontrib>Ahmer, Brian M. M.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baniasad, Maryam</au><au>Kim, Yongseok</au><au>Shaffer, Michael</au><au>Sabag-Daigle, Anice</au><au>Leleiwi, Ikaia</au><au>Daly, Rebecca A.</au><au>Ahmer, Brian M. M.</au><au>Wrighton, Kelly C.</au><au>Wysocki, Vicki H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>414</volume><issue>7</issue><spage>2317</spage><epage>2331</epage><pages>2317-2331</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35106611</pmid><doi>10.1007/s00216-022-03885-z</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2022-03, Vol.414 (7), p.2317-2331
issn 1618-2642
1618-2650
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9393048
source MEDLINE; SpringerLink Journals
subjects Actinobacteria
Analysis
Analytical Chemistry
Animals
Bacteria
Bacterial proteins
Bacterial Proteins - metabolism
Beads
Biochemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Contaminants
Digestive system
Extraction (Chemistry)
Feces
Feces - microbiology
Firmicutes
Food Science
Gastrointestinal Microbiome
Gastrointestinal tract
Gram-positive bacteria
Intestinal microflora
intestinal microorganisms
Laboratory Medicine
Lysis
Mass spectrometry
Methods
Mice
microbiome
Microbiomes
Microbiota
Monitoring/Environmental Analysis
Optimization
Paper in Forefront
Pollutant removal
Proteins
Proteobacteria
Proteomics
Proteomics - methods
Reproducibility
Reproducibility of Results
Sample preparation
Sodium dodecyl sulfate
Sodium lauryl sulfate
Urea
Workflow
title Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20proteomics%20sample%20preparation%20for%20identification%20of%20host%20and%20bacterial%20proteins%20in%20mouse%20feces&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Baniasad,%20Maryam&rft.date=2022-03-01&rft.volume=414&rft.issue=7&rft.spage=2317&rft.epage=2331&rft.pages=2317-2331&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-022-03885-z&rft_dat=%3Cgale_pubme%3EA695453479%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634667756&rft_id=info:pmid/35106611&rft_galeid=A695453479&rfr_iscdi=true