Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces
Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the p...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2022-03, Vol.414 (7), p.2317-2331 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2331 |
---|---|
container_issue | 7 |
container_start_page | 2317 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 414 |
creator | Baniasad, Maryam Kim, Yongseok Shaffer, Michael Sabag-Daigle, Anice Leleiwi, Ikaia Daly, Rebecca A. Ahmer, Brian M. M. Wrighton, Kelly C. Wysocki, Vicki H. |
description | Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.
Graphical abstract |
doi_str_mv | 10.1007/s00216-022-03885-z |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9393048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695453479</galeid><sourcerecordid>A695453479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</originalsourceid><addsrcrecordid>eNqNkktv1TAQhSMEoqXwB1igSGzYpNiOPXE2SFXFS6rUDaytiTO-dZXYwc5F4v56XFIujwVCXtgaf-doPD5V9Zyzc85Y9zozJjg0TIiGtVqr5vCgOuXAdSNAsYfHsxQn1ZOcbxnjSnN4XJ20ijMAzk-rcL2sfvYHXH0MdXT1kuJKcfY21xnnZaJSoQXTBriYaj9SWL3z9qi5iXmtMYz1gHal5HHabHzItQ_1HPeZakeW8tPqkcMp07P7_az6_O7tp8sPzdX1-4-XF1eNVRLWBng3oB6sFp3iA0otENER73tApnGAoXNMcwuASkqrQcAIwvVSM2adHNuz6s3mu-yHmUZbOk44mSX5GdM3E9GbP2-CvzG7-NX0bd8yqYvBq3uDFL_sKa9m9tnSNGGg8hxTplomDoKz_0CF7JXQAgr68i_0Nu5TKJMoVCsBuk7dUecbtcOJjA8ulhZtWSOVf4mBnC_1C-iVVK3s-iIQm8CmmHMid3woZ-YuKmaLiilRMT-iYg5F9OL3ER0lP7NRgHYDcrkKO0q_mv2H7XftEsv7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634667756</pqid></control><display><type>article</type><title>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Baniasad, Maryam ; Kim, Yongseok ; Shaffer, Michael ; Sabag-Daigle, Anice ; Leleiwi, Ikaia ; Daly, Rebecca A. ; Ahmer, Brian M. M. ; Wrighton, Kelly C. ; Wysocki, Vicki H.</creator><creatorcontrib>Baniasad, Maryam ; Kim, Yongseok ; Shaffer, Michael ; Sabag-Daigle, Anice ; Leleiwi, Ikaia ; Daly, Rebecca A. ; Ahmer, Brian M. M. ; Wrighton, Kelly C. ; Wysocki, Vicki H.</creatorcontrib><description>Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.
Graphical abstract</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-022-03885-z</identifier><identifier>PMID: 35106611</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actinobacteria ; Analysis ; Analytical Chemistry ; Animals ; Bacteria ; Bacterial proteins ; Bacterial Proteins - metabolism ; Beads ; Biochemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Contaminants ; Digestive system ; Extraction (Chemistry) ; Feces ; Feces - microbiology ; Firmicutes ; Food Science ; Gastrointestinal Microbiome ; Gastrointestinal tract ; Gram-positive bacteria ; Intestinal microflora ; intestinal microorganisms ; Laboratory Medicine ; Lysis ; Mass spectrometry ; Methods ; Mice ; microbiome ; Microbiomes ; Microbiota ; Monitoring/Environmental Analysis ; Optimization ; Paper in Forefront ; Pollutant removal ; Proteins ; Proteobacteria ; Proteomics ; Proteomics - methods ; Reproducibility ; Reproducibility of Results ; Sample preparation ; Sodium dodecyl sulfate ; Sodium lauryl sulfate ; Urea ; Workflow</subject><ispartof>Analytical and bioanalytical chemistry, 2022-03, Vol.414 (7), p.2317-2331</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</citedby><cites>FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-022-03885-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-022-03885-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35106611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baniasad, Maryam</creatorcontrib><creatorcontrib>Kim, Yongseok</creatorcontrib><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Sabag-Daigle, Anice</creatorcontrib><creatorcontrib>Leleiwi, Ikaia</creatorcontrib><creatorcontrib>Daly, Rebecca A.</creatorcontrib><creatorcontrib>Ahmer, Brian M. M.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><title>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.
Graphical abstract</description><subject>Actinobacteria</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - metabolism</subject><subject>Beads</subject><subject>Biochemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Contaminants</subject><subject>Digestive system</subject><subject>Extraction (Chemistry)</subject><subject>Feces</subject><subject>Feces - microbiology</subject><subject>Firmicutes</subject><subject>Food Science</subject><subject>Gastrointestinal Microbiome</subject><subject>Gastrointestinal tract</subject><subject>Gram-positive bacteria</subject><subject>Intestinal microflora</subject><subject>intestinal microorganisms</subject><subject>Laboratory Medicine</subject><subject>Lysis</subject><subject>Mass spectrometry</subject><subject>Methods</subject><subject>Mice</subject><subject>microbiome</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Monitoring/Environmental Analysis</subject><subject>Optimization</subject><subject>Paper in Forefront</subject><subject>Pollutant removal</subject><subject>Proteins</subject><subject>Proteobacteria</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Sample preparation</subject><subject>Sodium dodecyl sulfate</subject><subject>Sodium lauryl sulfate</subject><subject>Urea</subject><subject>Workflow</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkktv1TAQhSMEoqXwB1igSGzYpNiOPXE2SFXFS6rUDaytiTO-dZXYwc5F4v56XFIujwVCXtgaf-doPD5V9Zyzc85Y9zozJjg0TIiGtVqr5vCgOuXAdSNAsYfHsxQn1ZOcbxnjSnN4XJ20ijMAzk-rcL2sfvYHXH0MdXT1kuJKcfY21xnnZaJSoQXTBriYaj9SWL3z9qi5iXmtMYz1gHal5HHabHzItQ_1HPeZakeW8tPqkcMp07P7_az6_O7tp8sPzdX1-4-XF1eNVRLWBng3oB6sFp3iA0otENER73tApnGAoXNMcwuASkqrQcAIwvVSM2adHNuz6s3mu-yHmUZbOk44mSX5GdM3E9GbP2-CvzG7-NX0bd8yqYvBq3uDFL_sKa9m9tnSNGGg8hxTplomDoKz_0CF7JXQAgr68i_0Nu5TKJMoVCsBuk7dUecbtcOJjA8ulhZtWSOVf4mBnC_1C-iVVK3s-iIQm8CmmHMid3woZ-YuKmaLiilRMT-iYg5F9OL3ER0lP7NRgHYDcrkKO0q_mv2H7XftEsv7</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Baniasad, Maryam</creator><creator>Kim, Yongseok</creator><creator>Shaffer, Michael</creator><creator>Sabag-Daigle, Anice</creator><creator>Leleiwi, Ikaia</creator><creator>Daly, Rebecca A.</creator><creator>Ahmer, Brian M. M.</creator><creator>Wrighton, Kelly C.</creator><creator>Wysocki, Vicki H.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20220301</creationdate><title>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</title><author>Baniasad, Maryam ; Kim, Yongseok ; Shaffer, Michael ; Sabag-Daigle, Anice ; Leleiwi, Ikaia ; Daly, Rebecca A. ; Ahmer, Brian M. M. ; Wrighton, Kelly C. ; Wysocki, Vicki H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-617ba8bc82751ba482aaafe1996a08ab6b7f081c66a544c8626d62f94800cf4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Actinobacteria</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - metabolism</topic><topic>Beads</topic><topic>Biochemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Contaminants</topic><topic>Digestive system</topic><topic>Extraction (Chemistry)</topic><topic>Feces</topic><topic>Feces - microbiology</topic><topic>Firmicutes</topic><topic>Food Science</topic><topic>Gastrointestinal Microbiome</topic><topic>Gastrointestinal tract</topic><topic>Gram-positive bacteria</topic><topic>Intestinal microflora</topic><topic>intestinal microorganisms</topic><topic>Laboratory Medicine</topic><topic>Lysis</topic><topic>Mass spectrometry</topic><topic>Methods</topic><topic>Mice</topic><topic>microbiome</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Monitoring/Environmental Analysis</topic><topic>Optimization</topic><topic>Paper in Forefront</topic><topic>Pollutant removal</topic><topic>Proteins</topic><topic>Proteobacteria</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Sample preparation</topic><topic>Sodium dodecyl sulfate</topic><topic>Sodium lauryl sulfate</topic><topic>Urea</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baniasad, Maryam</creatorcontrib><creatorcontrib>Kim, Yongseok</creatorcontrib><creatorcontrib>Shaffer, Michael</creatorcontrib><creatorcontrib>Sabag-Daigle, Anice</creatorcontrib><creatorcontrib>Leleiwi, Ikaia</creatorcontrib><creatorcontrib>Daly, Rebecca A.</creatorcontrib><creatorcontrib>Ahmer, Brian M. M.</creatorcontrib><creatorcontrib>Wrighton, Kelly C.</creatorcontrib><creatorcontrib>Wysocki, Vicki H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baniasad, Maryam</au><au>Kim, Yongseok</au><au>Shaffer, Michael</au><au>Sabag-Daigle, Anice</au><au>Leleiwi, Ikaia</au><au>Daly, Rebecca A.</au><au>Ahmer, Brian M. M.</au><au>Wrighton, Kelly C.</au><au>Wysocki, Vicki H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>414</volume><issue>7</issue><spage>2317</spage><epage>2331</epage><pages>2317-2331</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Bottom-up proteomics is a powerful method for the functional characterization of mouse gut microbiota. To date, most of the bottom-up proteomics studies of the mouse gut rely on limited amounts of fecal samples. With mass-limited samples, the performance of such analyses is highly dependent on the protein extraction protocols and contaminant removal strategies. Here, protein extraction protocols (using different lysis buffers) and contaminant removal strategies (using different types of filters and beads) were systematically evaluated to maximize quantitative reproducibility and the number of identified proteins. Overall, our results recommend a protein extraction method using a combination of sodium dodecyl sulfate (SDS) and urea in Tris–HCl to yield the greatest number of protein identifications. These conditions led to an increase in the number of proteins identified from gram-positive bacteria, such as Firmicutes and Actinobacteria, which is a challenging task. Our analysis further confirmed these conditions led to the extraction of non-abundant bacterial phyla such as Proteobacteria. In addition, we found that, when coupled to our optimized extraction method, suspension trap (S-Trap) outperforms other contaminant removal methods by providing the most reproducible method while producing the greatest number of protein identifications. Overall, our optimized sample preparation workflow is straightforward and fast, and requires minimal sample handling. Furthermore, our approach does not require high amounts of fecal samples, a vital consideration in proteomics studies where mice produce smaller amounts of feces due to a particular physiological condition. Our final method provides efficient digestion of mouse fecal material, is reproducible, and leads to high proteomic coverage for both host and microbiome proteins.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35106611</pmid><doi>10.1007/s00216-022-03885-z</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2022-03, Vol.414 (7), p.2317-2331 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9393048 |
source | MEDLINE; SpringerLink Journals |
subjects | Actinobacteria Analysis Analytical Chemistry Animals Bacteria Bacterial proteins Bacterial Proteins - metabolism Beads Biochemistry Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Contaminants Digestive system Extraction (Chemistry) Feces Feces - microbiology Firmicutes Food Science Gastrointestinal Microbiome Gastrointestinal tract Gram-positive bacteria Intestinal microflora intestinal microorganisms Laboratory Medicine Lysis Mass spectrometry Methods Mice microbiome Microbiomes Microbiota Monitoring/Environmental Analysis Optimization Paper in Forefront Pollutant removal Proteins Proteobacteria Proteomics Proteomics - methods Reproducibility Reproducibility of Results Sample preparation Sodium dodecyl sulfate Sodium lauryl sulfate Urea Workflow |
title | Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20proteomics%20sample%20preparation%20for%20identification%20of%20host%20and%20bacterial%20proteins%20in%20mouse%20feces&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Baniasad,%20Maryam&rft.date=2022-03-01&rft.volume=414&rft.issue=7&rft.spage=2317&rft.epage=2331&rft.pages=2317-2331&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-022-03885-z&rft_dat=%3Cgale_pubme%3EA695453479%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634667756&rft_id=info:pmid/35106611&rft_galeid=A695453479&rfr_iscdi=true |