A review of the design of load-carrying exoskeletons
The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. H...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 2022, Vol.65 (9), p.2051-2067 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2067 |
---|---|
container_issue | 9 |
container_start_page | 2051 |
container_title | Science China. Technological sciences |
container_volume | 65 |
creator | Liang, JieJunYi Zhang, QinHao Liu, Yang Wang, Tao Wan, GuangFu |
description | The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads. |
doi_str_mv | 10.1007/s11431-022-2145-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9392988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707873249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobsz9AO8K3ngTzVfT5kYYwy8YeLP7kLanXWfXzKSd2783o0NRMDfJIc_7cs55Ebqm5I4Sktx7SgWnmDCGGRUx3p-hMU2lwlQRch7eMhE44YyO0NT7NQmHp4pQcYlGXBLOYhKPkZhFDnY1fEa2jLoVRAX4umqPVWNNgXPj3KFuqwj21r9DA51t_RW6KE3jYXq6J2j59Licv-DF2_PrfLbAuRBJh8EQZWTJOcQsU5mkrDBcJimLy7LMYpIWBbDcZHloH0wuM54UUEghBWWlAT5BD4Ptts82UOTQds40euvqjXEHbU2tf_-09UpXdqcVV0ylaTC4PRk4-9GD7_Sm9jk0jWnB9l6zhCRpWJFQAb35g65t79owXaAo5SpWigWKDlTurPcOyu9mKNHHVPSQig6p6GMqeh80bND4wLYVuB_n_0VfshiOlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711395992</pqid></control><display><type>article</type><title>A review of the design of load-carrying exoskeletons</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, JieJunYi ; Zhang, QinHao ; Liu, Yang ; Wang, Tao ; Wan, GuangFu</creator><creatorcontrib>Liang, JieJunYi ; Zhang, QinHao ; Liu, Yang ; Wang, Tao ; Wan, GuangFu</creatorcontrib><description>The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-022-2145-x</identifier><identifier>PMID: 36032505</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Augmentation ; Backpacks ; Biomechanics ; Design ; Engineering ; Exoskeletons ; Human performance ; Load ; Principles ; Review</subject><ispartof>Science China. Technological sciences, 2022, Vol.65 (9), p.2051-2067</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</citedby><cites>FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-022-2145-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-022-2145-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Liang, JieJunYi</creatorcontrib><creatorcontrib>Zhang, QinHao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wan, GuangFu</creatorcontrib><title>A review of the design of load-carrying exoskeletons</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.</description><subject>Augmentation</subject><subject>Backpacks</subject><subject>Biomechanics</subject><subject>Design</subject><subject>Engineering</subject><subject>Exoskeletons</subject><subject>Human performance</subject><subject>Load</subject><subject>Principles</subject><subject>Review</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kV1LwzAUhoMobsz9AO8K3ngTzVfT5kYYwy8YeLP7kLanXWfXzKSd2783o0NRMDfJIc_7cs55Ebqm5I4Sktx7SgWnmDCGGRUx3p-hMU2lwlQRch7eMhE44YyO0NT7NQmHp4pQcYlGXBLOYhKPkZhFDnY1fEa2jLoVRAX4umqPVWNNgXPj3KFuqwj21r9DA51t_RW6KE3jYXq6J2j59Licv-DF2_PrfLbAuRBJh8EQZWTJOcQsU5mkrDBcJimLy7LMYpIWBbDcZHloH0wuM54UUEghBWWlAT5BD4Ptts82UOTQds40euvqjXEHbU2tf_-09UpXdqcVV0ylaTC4PRk4-9GD7_Sm9jk0jWnB9l6zhCRpWJFQAb35g65t79owXaAo5SpWigWKDlTurPcOyu9mKNHHVPSQig6p6GMqeh80bND4wLYVuB_n_0VfshiOlQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liang, JieJunYi</creator><creator>Zhang, QinHao</creator><creator>Liu, Yang</creator><creator>Wang, Tao</creator><creator>Wan, GuangFu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2022</creationdate><title>A review of the design of load-carrying exoskeletons</title><author>Liang, JieJunYi ; Zhang, QinHao ; Liu, Yang ; Wang, Tao ; Wan, GuangFu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Augmentation</topic><topic>Backpacks</topic><topic>Biomechanics</topic><topic>Design</topic><topic>Engineering</topic><topic>Exoskeletons</topic><topic>Human performance</topic><topic>Load</topic><topic>Principles</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, JieJunYi</creatorcontrib><creatorcontrib>Zhang, QinHao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wan, GuangFu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, JieJunYi</au><au>Zhang, QinHao</au><au>Liu, Yang</au><au>Wang, Tao</au><au>Wan, GuangFu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of the design of load-carrying exoskeletons</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>9</issue><spage>2051</spage><epage>2067</epage><pages>2051-2067</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>36032505</pmid><doi>10.1007/s11431-022-2145-x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 2022, Vol.65 (9), p.2051-2067 |
issn | 1674-7321 1869-1900 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9392988 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Augmentation Backpacks Biomechanics Design Engineering Exoskeletons Human performance Load Principles Review |
title | A review of the design of load-carrying exoskeletons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20the%20design%20of%20load-carrying%20exoskeletons&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Liang,%20JieJunYi&rft.date=2022&rft.volume=65&rft.issue=9&rft.spage=2051&rft.epage=2067&rft.pages=2051-2067&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-022-2145-x&rft_dat=%3Cproquest_pubme%3E2707873249%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711395992&rft_id=info:pmid/36032505&rfr_iscdi=true |