A review of the design of load-carrying exoskeletons

The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2022, Vol.65 (9), p.2051-2067
Hauptverfasser: Liang, JieJunYi, Zhang, QinHao, Liu, Yang, Wang, Tao, Wan, GuangFu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2067
container_issue 9
container_start_page 2051
container_title Science China. Technological sciences
container_volume 65
creator Liang, JieJunYi
Zhang, QinHao
Liu, Yang
Wang, Tao
Wan, GuangFu
description The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.
doi_str_mv 10.1007/s11431-022-2145-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9392988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2707873249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</originalsourceid><addsrcrecordid>eNp1kV1LwzAUhoMobsz9AO8K3ngTzVfT5kYYwy8YeLP7kLanXWfXzKSd2783o0NRMDfJIc_7cs55Ebqm5I4Sktx7SgWnmDCGGRUx3p-hMU2lwlQRch7eMhE44YyO0NT7NQmHp4pQcYlGXBLOYhKPkZhFDnY1fEa2jLoVRAX4umqPVWNNgXPj3KFuqwj21r9DA51t_RW6KE3jYXq6J2j59Licv-DF2_PrfLbAuRBJh8EQZWTJOcQsU5mkrDBcJimLy7LMYpIWBbDcZHloH0wuM54UUEghBWWlAT5BD4Ptts82UOTQds40euvqjXEHbU2tf_-09UpXdqcVV0ylaTC4PRk4-9GD7_Sm9jk0jWnB9l6zhCRpWJFQAb35g65t79owXaAo5SpWigWKDlTurPcOyu9mKNHHVPSQig6p6GMqeh80bND4wLYVuB_n_0VfshiOlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2711395992</pqid></control><display><type>article</type><title>A review of the design of load-carrying exoskeletons</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, JieJunYi ; Zhang, QinHao ; Liu, Yang ; Wang, Tao ; Wan, GuangFu</creator><creatorcontrib>Liang, JieJunYi ; Zhang, QinHao ; Liu, Yang ; Wang, Tao ; Wan, GuangFu</creatorcontrib><description>The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.</description><identifier>ISSN: 1674-7321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>DOI: 10.1007/s11431-022-2145-x</identifier><identifier>PMID: 36032505</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Augmentation ; Backpacks ; Biomechanics ; Design ; Engineering ; Exoskeletons ; Human performance ; Load ; Principles ; Review</subject><ispartof>Science China. Technological sciences, 2022, Vol.65 (9), p.2051-2067</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</citedby><cites>FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11431-022-2145-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11431-022-2145-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Liang, JieJunYi</creatorcontrib><creatorcontrib>Zhang, QinHao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wan, GuangFu</creatorcontrib><title>A review of the design of load-carrying exoskeletons</title><title>Science China. Technological sciences</title><addtitle>Sci. China Technol. Sci</addtitle><description>The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.</description><subject>Augmentation</subject><subject>Backpacks</subject><subject>Biomechanics</subject><subject>Design</subject><subject>Engineering</subject><subject>Exoskeletons</subject><subject>Human performance</subject><subject>Load</subject><subject>Principles</subject><subject>Review</subject><issn>1674-7321</issn><issn>1869-1900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kV1LwzAUhoMobsz9AO8K3ngTzVfT5kYYwy8YeLP7kLanXWfXzKSd2783o0NRMDfJIc_7cs55Ebqm5I4Sktx7SgWnmDCGGRUx3p-hMU2lwlQRch7eMhE44YyO0NT7NQmHp4pQcYlGXBLOYhKPkZhFDnY1fEa2jLoVRAX4umqPVWNNgXPj3KFuqwj21r9DA51t_RW6KE3jYXq6J2j59Licv-DF2_PrfLbAuRBJh8EQZWTJOcQsU5mkrDBcJimLy7LMYpIWBbDcZHloH0wuM54UUEghBWWlAT5BD4Ptts82UOTQds40euvqjXEHbU2tf_-09UpXdqcVV0ylaTC4PRk4-9GD7_Sm9jk0jWnB9l6zhCRpWJFQAb35g65t79owXaAo5SpWigWKDlTurPcOyu9mKNHHVPSQig6p6GMqeh80bND4wLYVuB_n_0VfshiOlQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liang, JieJunYi</creator><creator>Zhang, QinHao</creator><creator>Liu, Yang</creator><creator>Wang, Tao</creator><creator>Wan, GuangFu</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2022</creationdate><title>A review of the design of load-carrying exoskeletons</title><author>Liang, JieJunYi ; Zhang, QinHao ; Liu, Yang ; Wang, Tao ; Wan, GuangFu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ea09a6f33e52b9b612da367825fffb508dde2cabc145eac6b37ded646412fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Augmentation</topic><topic>Backpacks</topic><topic>Biomechanics</topic><topic>Design</topic><topic>Engineering</topic><topic>Exoskeletons</topic><topic>Human performance</topic><topic>Load</topic><topic>Principles</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, JieJunYi</creatorcontrib><creatorcontrib>Zhang, QinHao</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Wan, GuangFu</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, JieJunYi</au><au>Zhang, QinHao</au><au>Liu, Yang</au><au>Wang, Tao</au><au>Wan, GuangFu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review of the design of load-carrying exoskeletons</atitle><jtitle>Science China. Technological sciences</jtitle><stitle>Sci. China Technol. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>9</issue><spage>2051</spage><epage>2067</epage><pages>2051-2067</pages><issn>1674-7321</issn><eissn>1869-1900</eissn><abstract>The increasing necessity of load-carrying activities has led to greater human musculoskeletal damage and an increased metabolic cost. With the rise of exoskeleton technology, researchers have begun exploring different approaches to developing wearable robots to augment human load-carrying ability. However, there is a lack of systematic discussion on biomechanics, mechanical designs, and augmentation performance. To achieve this, extensive studies have been reviewed and 108 references are selected mainly from 2013 to 2022 to address the most recent development. Other earlier 20 studies are selected to present the origin of different design principles. In terms of the way to achieve load-carrying augmentation, the exoskeletons reviewed in this paper are sorted by four categories based on the design principles, namely load-suspended backpacks, lower-limb exoskeletons providing joint torques, exoskeletons transferring load to the ground and exoskeletons transferring load between body segments. Specifically, the driving modes of active and passive, the structure of rigid and flexible, the conflict between assistive performance and the mass penalty of the exoskeleton, and the autonomy are discussed in detail in each section to illustrate the advances, challenges, and future trends of exoskeletons designed to carry loads.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>36032505</pmid><doi>10.1007/s11431-022-2145-x</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 2022, Vol.65 (9), p.2051-2067
issn 1674-7321
1869-1900
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9392988
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Augmentation
Backpacks
Biomechanics
Design
Engineering
Exoskeletons
Human performance
Load
Principles
Review
title A review of the design of load-carrying exoskeletons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A37%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20of%20the%20design%20of%20load-carrying%20exoskeletons&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=Liang,%20JieJunYi&rft.date=2022&rft.volume=65&rft.issue=9&rft.spage=2051&rft.epage=2067&rft.pages=2051-2067&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/s11431-022-2145-x&rft_dat=%3Cproquest_pubme%3E2707873249%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2711395992&rft_id=info:pmid/36032505&rfr_iscdi=true