MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH
Highlights The nanocorn design enables In 2 O 3- x @C a high Faradaic efficiency of 98% and a high formate current density of 320 mA cm −2 at a low potential of -1.2 V versus hydrogen electrode without iR correction. The rich O vacancy activates In 3+ sites on the nanocube shell of In 2 O 3- x @C an...
Gespeichert in:
Veröffentlicht in: | Nano-Micro Letters 2022-12, Vol.14 (1), p.167, Article 167 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 167 |
container_title | Nano-Micro Letters |
container_volume | 14 |
creator | Qiu, Chen Qian, Kun Yu, Jun Sun, Mingzi Cao, Shoufu Gao, Jinqiang Yu, Rongxing Fang, Lingzhe Yao, Youwei Lu, Xiaoqing Li, Tao Huang, Bolong Yang, Shihe |
description | Highlights
The nanocorn design enables In
2
O
3-
x
@C a high Faradaic efficiency of 98% and a high formate current density of 320 mA cm
−2
at a low potential of -1.2 V versus hydrogen electrode without
iR
correction.
The rich O vacancy activates In
3+
sites on the nanocube shell of In
2
O
3-
x
@C and the carbon cob enhances conductivity.
Operando X-ray absorption spectroscopy unveils the active site of In
3+
for formate production although reduction of In
3+
to In is conceivable at the applied negative potentials during CO
2
reduction reaction.
For electrochemical CO
2
reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (
J
HCOOH
) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In
2
O
3-
x
@C nanocatalyst, wherein In
2
O
3-
x
nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm
−2
J
HCOOH
at a low potential of − 0.4 V versus RHE. At the current density of 100 mA cm
−2
, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In
2
O
3-
x
has exposed more In
3+
sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In
3+
as the active site and the key intermediate of HCOO* during the process of CO
2
reduction to HCOOH. |
doi_str_mv | 10.1007/s40820-022-00913-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9385936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890052199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-d1ea100ab58d12822cbe23f4022374eba3152ff9f2302ed75eb968fea27cdad13</originalsourceid><addsrcrecordid>eNp9kUFvFSEUhSdGY5vaP-Bqohs3WLjAMGyMZvLqa1KdxNS4JAwDLWYeVGAa--_l9TUaXbgCwnfPPfeepnlJ8FuCsTjLDPeAEQZAGEtCUfekOQbCMeKck6f1TglBncDdUXOas58wByZAcPa8OaJciq6-jptvn8ZzdJV0yC6mnZ3biwAjRT_fD-1nHaKJKbSbxZqSotFFL_e5tJVsN855420o7TBC-8XOqyk-hrbEdjuM4_ZF88zpJdvTx_Ok-Xq-uRq26HL8eDF8uESGib6gmVhdx9ET72cCPYCZLFDH6lhUMDtpSjg4Jx1QDHYW3E6y653VIMysZ0JPmncH3dt1qvZNdZT0om6T3-l0r6L26u-f4G_UdbxTkvZc0q4KvDoIxFy8ysYXa25MDKHOrIAxgUVfoTePXVL8sdpc1M5nY5dFBxvXrEBgykjH5B59_Q_6Pa4p1B0o6CWuKRApKwUHyqSYc7Lut2OC1T5fdchX1UWoh3zV3io9FOUKh2ub_kj_p-oX6emk9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890052199</pqid></control><display><type>article</type><title>MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Qiu, Chen ; Qian, Kun ; Yu, Jun ; Sun, Mingzi ; Cao, Shoufu ; Gao, Jinqiang ; Yu, Rongxing ; Fang, Lingzhe ; Yao, Youwei ; Lu, Xiaoqing ; Li, Tao ; Huang, Bolong ; Yang, Shihe</creator><creatorcontrib>Qiu, Chen ; Qian, Kun ; Yu, Jun ; Sun, Mingzi ; Cao, Shoufu ; Gao, Jinqiang ; Yu, Rongxing ; Fang, Lingzhe ; Yao, Youwei ; Lu, Xiaoqing ; Li, Tao ; Huang, Bolong ; Yang, Shihe ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Highlights
The nanocorn design enables In
2
O
3-
x
@C a high Faradaic efficiency of 98% and a high formate current density of 320 mA cm
−2
at a low potential of -1.2 V versus hydrogen electrode without
iR
correction.
The rich O vacancy activates In
3+
sites on the nanocube shell of In
2
O
3-
x
@C and the carbon cob enhances conductivity.
Operando X-ray absorption spectroscopy unveils the active site of In
3+
for formate production although reduction of In
3+
to In is conceivable at the applied negative potentials during CO
2
reduction reaction.
For electrochemical CO
2
reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (
J
HCOOH
) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In
2
O
3-
x
@C nanocatalyst, wherein In
2
O
3-
x
nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm
−2
J
HCOOH
at a low potential of − 0.4 V versus RHE. At the current density of 100 mA cm
−2
, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In
2
O
3-
x
has exposed more In
3+
sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In
3+
as the active site and the key intermediate of HCOO* during the process of CO
2
reduction to HCOOH.</description><identifier>ISSN: 2311-6706</identifier><identifier>ISSN: 2150-5551</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-022-00913-6</identifier><identifier>PMID: 35976472</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Absorption spectroscopy ; active sites ; Carbon dioxide ; Chemical reduction ; CO2 reduction ; corn design ; Current density ; Density functional theory ; Electroactivity ; Electrocatalysts ; Electrocatalytic CO2 Reduction ; Engineering ; formate ; indium oxide ; Indium oxides ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Low conductivity ; Nanorods ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; Spectrum analysis ; X ray absorption</subject><ispartof>Nano-Micro Letters, 2022-12, Vol.14 (1), p.167, Article 167</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022. The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-d1ea100ab58d12822cbe23f4022374eba3152ff9f2302ed75eb968fea27cdad13</citedby><cites>FETCH-LOGICAL-c478t-d1ea100ab58d12822cbe23f4022374eba3152ff9f2302ed75eb968fea27cdad13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,41464,42165,42533,51294,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2447078$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Chen</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Sun, Mingzi</creatorcontrib><creatorcontrib>Cao, Shoufu</creatorcontrib><creatorcontrib>Gao, Jinqiang</creatorcontrib><creatorcontrib>Yu, Rongxing</creatorcontrib><creatorcontrib>Fang, Lingzhe</creatorcontrib><creatorcontrib>Yao, Youwei</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Yang, Shihe</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH</title><title>Nano-Micro Letters</title><addtitle>Nano-Micro Lett</addtitle><description>Highlights
The nanocorn design enables In
2
O
3-
x
@C a high Faradaic efficiency of 98% and a high formate current density of 320 mA cm
−2
at a low potential of -1.2 V versus hydrogen electrode without
iR
correction.
The rich O vacancy activates In
3+
sites on the nanocube shell of In
2
O
3-
x
@C and the carbon cob enhances conductivity.
Operando X-ray absorption spectroscopy unveils the active site of In
3+
for formate production although reduction of In
3+
to In is conceivable at the applied negative potentials during CO
2
reduction reaction.
For electrochemical CO
2
reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (
J
HCOOH
) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In
2
O
3-
x
@C nanocatalyst, wherein In
2
O
3-
x
nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm
−2
J
HCOOH
at a low potential of − 0.4 V versus RHE. At the current density of 100 mA cm
−2
, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In
2
O
3-
x
has exposed more In
3+
sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In
3+
as the active site and the key intermediate of HCOO* during the process of CO
2
reduction to HCOOH.</description><subject>Absorption spectroscopy</subject><subject>active sites</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>CO2 reduction</subject><subject>corn design</subject><subject>Current density</subject><subject>Density functional theory</subject><subject>Electroactivity</subject><subject>Electrocatalysts</subject><subject>Electrocatalytic CO2 Reduction</subject><subject>Engineering</subject><subject>formate</subject><subject>indium oxide</subject><subject>Indium oxides</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Low conductivity</subject><subject>Nanorods</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Spectrum analysis</subject><subject>X ray absorption</subject><issn>2311-6706</issn><issn>2150-5551</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kUFvFSEUhSdGY5vaP-Bqohs3WLjAMGyMZvLqa1KdxNS4JAwDLWYeVGAa--_l9TUaXbgCwnfPPfeepnlJ8FuCsTjLDPeAEQZAGEtCUfekOQbCMeKck6f1TglBncDdUXOas58wByZAcPa8OaJciq6-jptvn8ZzdJV0yC6mnZ3biwAjRT_fD-1nHaKJKbSbxZqSotFFL_e5tJVsN855420o7TBC-8XOqyk-hrbEdjuM4_ZF88zpJdvTx_Ok-Xq-uRq26HL8eDF8uESGib6gmVhdx9ET72cCPYCZLFDH6lhUMDtpSjg4Jx1QDHYW3E6y653VIMysZ0JPmncH3dt1qvZNdZT0om6T3-l0r6L26u-f4G_UdbxTkvZc0q4KvDoIxFy8ysYXa25MDKHOrIAxgUVfoTePXVL8sdpc1M5nY5dFBxvXrEBgykjH5B59_Q_6Pa4p1B0o6CWuKRApKwUHyqSYc7Lut2OC1T5fdchX1UWoh3zV3io9FOUKh2ub_kj_p-oX6emk9A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Qiu, Chen</creator><creator>Qian, Kun</creator><creator>Yu, Jun</creator><creator>Sun, Mingzi</creator><creator>Cao, Shoufu</creator><creator>Gao, Jinqiang</creator><creator>Yu, Rongxing</creator><creator>Fang, Lingzhe</creator><creator>Yao, Youwei</creator><creator>Lu, Xiaoqing</creator><creator>Li, Tao</creator><creator>Huang, Bolong</creator><creator>Yang, Shihe</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20221201</creationdate><title>MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH</title><author>Qiu, Chen ; Qian, Kun ; Yu, Jun ; Sun, Mingzi ; Cao, Shoufu ; Gao, Jinqiang ; Yu, Rongxing ; Fang, Lingzhe ; Yao, Youwei ; Lu, Xiaoqing ; Li, Tao ; Huang, Bolong ; Yang, Shihe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-d1ea100ab58d12822cbe23f4022374eba3152ff9f2302ed75eb968fea27cdad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption spectroscopy</topic><topic>active sites</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>CO2 reduction</topic><topic>corn design</topic><topic>Current density</topic><topic>Density functional theory</topic><topic>Electroactivity</topic><topic>Electrocatalysts</topic><topic>Electrocatalytic CO2 Reduction</topic><topic>Engineering</topic><topic>formate</topic><topic>indium oxide</topic><topic>Indium oxides</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Low conductivity</topic><topic>Nanorods</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Spectrum analysis</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Chen</creatorcontrib><creatorcontrib>Qian, Kun</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><creatorcontrib>Sun, Mingzi</creatorcontrib><creatorcontrib>Cao, Shoufu</creatorcontrib><creatorcontrib>Gao, Jinqiang</creatorcontrib><creatorcontrib>Yu, Rongxing</creatorcontrib><creatorcontrib>Fang, Lingzhe</creatorcontrib><creatorcontrib>Yao, Youwei</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Huang, Bolong</creatorcontrib><creatorcontrib>Yang, Shihe</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nano-Micro Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Chen</au><au>Qian, Kun</au><au>Yu, Jun</au><au>Sun, Mingzi</au><au>Cao, Shoufu</au><au>Gao, Jinqiang</au><au>Yu, Rongxing</au><au>Fang, Lingzhe</au><au>Yao, Youwei</au><au>Lu, Xiaoqing</au><au>Li, Tao</au><au>Huang, Bolong</au><au>Yang, Shihe</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH</atitle><jtitle>Nano-Micro Letters</jtitle><stitle>Nano-Micro Lett</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>167</spage><pages>167-</pages><artnum>167</artnum><issn>2311-6706</issn><issn>2150-5551</issn><eissn>2150-5551</eissn><abstract>Highlights
The nanocorn design enables In
2
O
3-
x
@C a high Faradaic efficiency of 98% and a high formate current density of 320 mA cm
−2
at a low potential of -1.2 V versus hydrogen electrode without
iR
correction.
The rich O vacancy activates In
3+
sites on the nanocube shell of In
2
O
3-
x
@C and the carbon cob enhances conductivity.
Operando X-ray absorption spectroscopy unveils the active site of In
3+
for formate production although reduction of In
3+
to In is conceivable at the applied negative potentials during CO
2
reduction reaction.
For electrochemical CO
2
reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (
J
HCOOH
) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In
2
O
3-
x
@C nanocatalyst, wherein In
2
O
3-
x
nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm
−2
J
HCOOH
at a low potential of − 0.4 V versus RHE. At the current density of 100 mA cm
−2
, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In
2
O
3-
x
has exposed more In
3+
sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In
3+
as the active site and the key intermediate of HCOO* during the process of CO
2
reduction to HCOOH.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>35976472</pmid><doi>10.1007/s40820-022-00913-6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-6706 |
ispartof | Nano-Micro Letters, 2022-12, Vol.14 (1), p.167, Article 167 |
issn | 2311-6706 2150-5551 2150-5551 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9385936 |
source | DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access |
subjects | Absorption spectroscopy active sites Carbon dioxide Chemical reduction CO2 reduction corn design Current density Density functional theory Electroactivity Electrocatalysts Electrocatalytic CO2 Reduction Engineering formate indium oxide Indium oxides INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Low conductivity Nanorods Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Spectrum analysis X ray absorption |
title | MOF-Transformed In2O3-x@C Nanocorn Electrocatalyst for Efficient CO2 Reduction to HCOOH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A12%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF-Transformed%20In2O3-x@C%20Nanocorn%20Electrocatalyst%20for%20Efficient%20CO2%20Reduction%20to%20HCOOH&rft.jtitle=Nano-Micro%20Letters&rft.au=Qiu,%20Chen&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2022-12-01&rft.volume=14&rft.issue=1&rft.spage=167&rft.pages=167-&rft.artnum=167&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-022-00913-6&rft_dat=%3Cproquest_pubme%3E2890052199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890052199&rft_id=info:pmid/35976472&rfr_iscdi=true |