The biology of mammalian multi-copper ferroxidases
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron...
Gespeichert in:
Veröffentlicht in: | Biometals 2023-04, Vol.36 (2), p.263-281 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 2 |
container_start_page | 263 |
container_title | Biometals |
container_volume | 36 |
creator | Helman, Sheridan L. Zhou, Jie Fuqua, Brie K. Lu, Yan Collins, James F. Chen, Huijun Vulpe, Christopher D. Anderson, Gregory J. Frazer, David M. |
description | The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood. |
doi_str_mv | 10.1007/s10534-022-00370-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9376197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629060793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8acce7b219b13fbccb7a04e663a19ded5fd6dda65dcb206412770916b08915e3</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EglL4AwwoEguL4WwnvnpBQhVfUiWW7pbjOG1QEhe7QbS_nkDL58B0wz333p0eQk4YXDAAvIwMMpFS4JwCCAS63iEDliGnI0SxSwagpKQwStMDchjjEwAoBLlPDkTGJAITA8Knc5fkla_9bJX4MmlM05i6Mm3SdPWyotYvFi4kpQvBv1aFiS4ekb3S1NEdb-uQTG9vpuN7Onm8exhfT6hNMV3SkbHWYc6Zypkoc2tzNJA6KYVhqnBFVhayKIzMCptzkCnjiKCYzGGkWObEkFxtYhdd3rjCunYZTK0XoWpMWGlvKv2701ZzPfMvWgmUTGEfcL4NCP65c3GpmypaV9emdb6LmkuuQAIq0aNnf9An34W2_05zVJhmHDj0FN9QNvgYgyu_jmGg343ojRHdG9EfRvS6Hzr9-cbXyKeCHhAbIPatdubC9-5_Yt8A_diXjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2797452020</pqid></control><display><type>article</type><title>The biology of mammalian multi-copper ferroxidases</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Helman, Sheridan L. ; Zhou, Jie ; Fuqua, Brie K. ; Lu, Yan ; Collins, James F. ; Chen, Huijun ; Vulpe, Christopher D. ; Anderson, Gregory J. ; Frazer, David M.</creator><creatorcontrib>Helman, Sheridan L. ; Zhou, Jie ; Fuqua, Brie K. ; Lu, Yan ; Collins, James F. ; Chen, Huijun ; Vulpe, Christopher D. ; Anderson, Gregory J. ; Frazer, David M.</creatorcontrib><description>The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-022-00370-z</identifier><identifier>PMID: 35167013</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animals ; Biochemistry ; Biology ; Biomedical and Life Sciences ; Cell Biology ; Central nervous system ; Ceruloplasmin ; Ceruloplasmin - metabolism ; Copper ; Copper - metabolism ; Enzymes ; Hair ; Homeostasis ; Immune response ; Intestine ; Iron ; Life Sciences ; Mammals ; Mammals - metabolism ; Medicine/Public Health ; Mice ; Mice, Knockout ; Microbiology ; Oxidation ; Oxidation-Reduction ; Pharmacology/Toxicology ; Plant Physiology ; Protein transport ; Proteins ; Small intestine ; Transferrin</subject><ispartof>Biometals, 2023-04, Vol.36 (2), p.263-281</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8acce7b219b13fbccb7a04e663a19ded5fd6dda65dcb206412770916b08915e3</citedby><cites>FETCH-LOGICAL-c474t-8acce7b219b13fbccb7a04e663a19ded5fd6dda65dcb206412770916b08915e3</cites><orcidid>0000-0002-7522-9454 ; 0000-0002-8765-0297 ; 0000-0001-6075-6780 ; 0000-0002-4875-6523 ; 0000-0002-2185-2988 ; 0000-0001-5134-8929 ; 0000-0002-8814-5866 ; 0000-0001-9309-8630 ; 0000-0003-4098-1379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-022-00370-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-022-00370-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35167013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helman, Sheridan L.</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Fuqua, Brie K.</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Collins, James F.</creatorcontrib><creatorcontrib>Chen, Huijun</creatorcontrib><creatorcontrib>Vulpe, Christopher D.</creatorcontrib><creatorcontrib>Anderson, Gregory J.</creatorcontrib><creatorcontrib>Frazer, David M.</creatorcontrib><title>The biology of mammalian multi-copper ferroxidases</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Central nervous system</subject><subject>Ceruloplasmin</subject><subject>Ceruloplasmin - metabolism</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>Enzymes</subject><subject>Hair</subject><subject>Homeostasis</subject><subject>Immune response</subject><subject>Intestine</subject><subject>Iron</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Medicine/Public Health</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Microbiology</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Pharmacology/Toxicology</subject><subject>Plant Physiology</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Small intestine</subject><subject>Transferrin</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1PwzAQhi0EglL4AwwoEguL4WwnvnpBQhVfUiWW7pbjOG1QEhe7QbS_nkDL58B0wz333p0eQk4YXDAAvIwMMpFS4JwCCAS63iEDliGnI0SxSwagpKQwStMDchjjEwAoBLlPDkTGJAITA8Knc5fkla_9bJX4MmlM05i6Mm3SdPWyotYvFi4kpQvBv1aFiS4ekb3S1NEdb-uQTG9vpuN7Onm8exhfT6hNMV3SkbHWYc6Zypkoc2tzNJA6KYVhqnBFVhayKIzMCptzkCnjiKCYzGGkWObEkFxtYhdd3rjCunYZTK0XoWpMWGlvKv2701ZzPfMvWgmUTGEfcL4NCP65c3GpmypaV9emdb6LmkuuQAIq0aNnf9An34W2_05zVJhmHDj0FN9QNvgYgyu_jmGg343ojRHdG9EfRvS6Hzr9-cbXyKeCHhAbIPatdubC9-5_Yt8A_diXjA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Helman, Sheridan L.</creator><creator>Zhou, Jie</creator><creator>Fuqua, Brie K.</creator><creator>Lu, Yan</creator><creator>Collins, James F.</creator><creator>Chen, Huijun</creator><creator>Vulpe, Christopher D.</creator><creator>Anderson, Gregory J.</creator><creator>Frazer, David M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7522-9454</orcidid><orcidid>https://orcid.org/0000-0002-8765-0297</orcidid><orcidid>https://orcid.org/0000-0001-6075-6780</orcidid><orcidid>https://orcid.org/0000-0002-4875-6523</orcidid><orcidid>https://orcid.org/0000-0002-2185-2988</orcidid><orcidid>https://orcid.org/0000-0001-5134-8929</orcidid><orcidid>https://orcid.org/0000-0002-8814-5866</orcidid><orcidid>https://orcid.org/0000-0001-9309-8630</orcidid><orcidid>https://orcid.org/0000-0003-4098-1379</orcidid></search><sort><creationdate>20230401</creationdate><title>The biology of mammalian multi-copper ferroxidases</title><author>Helman, Sheridan L. ; Zhou, Jie ; Fuqua, Brie K. ; Lu, Yan ; Collins, James F. ; Chen, Huijun ; Vulpe, Christopher D. ; Anderson, Gregory J. ; Frazer, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8acce7b219b13fbccb7a04e663a19ded5fd6dda65dcb206412770916b08915e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Central nervous system</topic><topic>Ceruloplasmin</topic><topic>Ceruloplasmin - metabolism</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>Enzymes</topic><topic>Hair</topic><topic>Homeostasis</topic><topic>Immune response</topic><topic>Intestine</topic><topic>Iron</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Medicine/Public Health</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Microbiology</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Pharmacology/Toxicology</topic><topic>Plant Physiology</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Small intestine</topic><topic>Transferrin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helman, Sheridan L.</creatorcontrib><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Fuqua, Brie K.</creatorcontrib><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Collins, James F.</creatorcontrib><creatorcontrib>Chen, Huijun</creatorcontrib><creatorcontrib>Vulpe, Christopher D.</creatorcontrib><creatorcontrib>Anderson, Gregory J.</creatorcontrib><creatorcontrib>Frazer, David M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helman, Sheridan L.</au><au>Zhou, Jie</au><au>Fuqua, Brie K.</au><au>Lu, Yan</au><au>Collins, James F.</au><au>Chen, Huijun</au><au>Vulpe, Christopher D.</au><au>Anderson, Gregory J.</au><au>Frazer, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The biology of mammalian multi-copper ferroxidases</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>36</volume><issue>2</issue><spage>263</spage><epage>281</epage><pages>263-281</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>35167013</pmid><doi>10.1007/s10534-022-00370-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7522-9454</orcidid><orcidid>https://orcid.org/0000-0002-8765-0297</orcidid><orcidid>https://orcid.org/0000-0001-6075-6780</orcidid><orcidid>https://orcid.org/0000-0002-4875-6523</orcidid><orcidid>https://orcid.org/0000-0002-2185-2988</orcidid><orcidid>https://orcid.org/0000-0001-5134-8929</orcidid><orcidid>https://orcid.org/0000-0002-8814-5866</orcidid><orcidid>https://orcid.org/0000-0001-9309-8630</orcidid><orcidid>https://orcid.org/0000-0003-4098-1379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2023-04, Vol.36 (2), p.263-281 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9376197 |
source | MEDLINE; SpringerNature Journals |
subjects | Animals Biochemistry Biology Biomedical and Life Sciences Cell Biology Central nervous system Ceruloplasmin Ceruloplasmin - metabolism Copper Copper - metabolism Enzymes Hair Homeostasis Immune response Intestine Iron Life Sciences Mammals Mammals - metabolism Medicine/Public Health Mice Mice, Knockout Microbiology Oxidation Oxidation-Reduction Pharmacology/Toxicology Plant Physiology Protein transport Proteins Small intestine Transferrin |
title | The biology of mammalian multi-copper ferroxidases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20biology%20of%20mammalian%20multi-copper%20ferroxidases&rft.jtitle=Biometals&rft.au=Helman,%20Sheridan%20L.&rft.date=2023-04-01&rft.volume=36&rft.issue=2&rft.spage=263&rft.epage=281&rft.pages=263-281&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-022-00370-z&rft_dat=%3Cproquest_pubme%3E2629060793%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2797452020&rft_id=info:pmid/35167013&rfr_iscdi=true |