Label-reconstruction-based pseudo-subscore learning for action quality assessment in sporting events
Most existing action quality assessment (AQA) methods provide only an overall quality score for the input video and lack an evaluation of each substage of the movement process; thus, these methods cannot provide detailed feedback for users. Moreover, the existing datasets do not provide labels for s...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-05, Vol.53 (9), p.10053-10067 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10067 |
---|---|
container_issue | 9 |
container_start_page | 10053 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 53 |
creator | Zhang, Hong-Bo Dong, Li-Jia Lei, Qing Yang, Li-Jie Du, Ji-Xiang |
description | Most existing action quality assessment (AQA) methods provide only an overall quality score for the input video and lack an evaluation of each substage of the movement process; thus, these methods cannot provide detailed feedback for users. Moreover, the existing datasets do not provide labels for substage quality assessment. To address these problems, in this work, a new label-reconstruction-based pseudo-subscore learning (PSL) method is proposed for AQA in sporting events. In the proposed method, the overall score of an action is not only regarded as a quality label but also used as a feature of the training set. A label-reconstruction-based learning algorithm is built to generate pseudo-subscore labels for the training set. Moreover, based on the pseudo-subscore labels and overall score labels, a multi-substage AQA model is fine-tuned from the PSL model to predict the action quality score of each substage and the overall score for an athlete. Several ablation experiments are performed to verify the effectiveness of each module. The experimental results show that our approach achieves state-of-the-art performance. |
doi_str_mv | 10.1007/s10489-022-03984-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9374585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2705396274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4209859dfac919ed98058dab61a38d7e9f13c93cf570774bf79b353df8301a203</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rj6BzxIgxcv0Xx2UhdBFr9gwIuCt5BO0mMvPclsqnth_72ZnXX9OHgqqHrqrXp5CXnO2WvOmHmDnCkLlAlBmQSrqH5ANlwbSY0C85BsGAhF-x6-n5EniJeMMSkZf0zOpAbgvYENiVs_pJnWFErGpa5hmUqmg8cUuwOmNRaK64Ch1NTNydc85V03ltr5W7K7Wv08LTedR0yI-5SXbsodHkpdjmS6bh18Sh6Nfsb07K6ek28f3n-9-ES3Xz5-vni3pUEZtVAlGFgNcfQBOKQIlmkb_dBzL200CUYuA8gwasOMUcNoYJBaxtE2V14weU7ennQP67BPMbTb1c_uUKe9rzeu-Mn9PcnTD7cr1w6kUdrqJvDqTqCWqzXh4vYThjTPPqeyohOGaQm9MKqhL_9BL8tac7PnhOXaKtGDbZQ4UaEWxJrG-2c4c8cQ3SlE10J0tyG64xcv_rRxv_IrtQbIE4BtlHep_r79H9mfJiCqkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815842698</pqid></control><display><type>article</type><title>Label-reconstruction-based pseudo-subscore learning for action quality assessment in sporting events</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Hong-Bo ; Dong, Li-Jia ; Lei, Qing ; Yang, Li-Jie ; Du, Ji-Xiang</creator><creatorcontrib>Zhang, Hong-Bo ; Dong, Li-Jia ; Lei, Qing ; Yang, Li-Jie ; Du, Ji-Xiang</creatorcontrib><description>Most existing action quality assessment (AQA) methods provide only an overall quality score for the input video and lack an evaluation of each substage of the movement process; thus, these methods cannot provide detailed feedback for users. Moreover, the existing datasets do not provide labels for substage quality assessment. To address these problems, in this work, a new label-reconstruction-based pseudo-subscore learning (PSL) method is proposed for AQA in sporting events. In the proposed method, the overall score of an action is not only regarded as a quality label but also used as a feature of the training set. A label-reconstruction-based learning algorithm is built to generate pseudo-subscore labels for the training set. Moreover, based on the pseudo-subscore labels and overall score labels, a multi-substage AQA model is fine-tuned from the PSL model to predict the action quality score of each substage and the overall score for an athlete. Several ablation experiments are performed to verify the effectiveness of each module. The experimental results show that our approach achieves state-of-the-art performance.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-022-03984-5</identifier><identifier>PMID: 35991679</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ablation ; Algorithms ; Artificial Intelligence ; Computer Science ; Datasets ; Decomposition ; Educational films ; Feedback ; Labels ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Methods ; Processes ; Quality assessment ; Reconstruction ; Semantics ; Training</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2023-05, Vol.53 (9), p.10053-10067</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4209859dfac919ed98058dab61a38d7e9f13c93cf570774bf79b353df8301a203</citedby><cites>FETCH-LOGICAL-c474t-4209859dfac919ed98058dab61a38d7e9f13c93cf570774bf79b353df8301a203</cites><orcidid>0000-0003-2386-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-022-03984-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-022-03984-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35991679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hong-Bo</creatorcontrib><creatorcontrib>Dong, Li-Jia</creatorcontrib><creatorcontrib>Lei, Qing</creatorcontrib><creatorcontrib>Yang, Li-Jie</creatorcontrib><creatorcontrib>Du, Ji-Xiang</creatorcontrib><title>Label-reconstruction-based pseudo-subscore learning for action quality assessment in sporting events</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><addtitle>Appl Intell (Dordr)</addtitle><description>Most existing action quality assessment (AQA) methods provide only an overall quality score for the input video and lack an evaluation of each substage of the movement process; thus, these methods cannot provide detailed feedback for users. Moreover, the existing datasets do not provide labels for substage quality assessment. To address these problems, in this work, a new label-reconstruction-based pseudo-subscore learning (PSL) method is proposed for AQA in sporting events. In the proposed method, the overall score of an action is not only regarded as a quality label but also used as a feature of the training set. A label-reconstruction-based learning algorithm is built to generate pseudo-subscore labels for the training set. Moreover, based on the pseudo-subscore labels and overall score labels, a multi-substage AQA model is fine-tuned from the PSL model to predict the action quality score of each substage and the overall score for an athlete. Several ablation experiments are performed to verify the effectiveness of each module. The experimental results show that our approach achieves state-of-the-art performance.</description><subject>Ablation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Educational films</subject><subject>Feedback</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Processes</subject><subject>Quality assessment</subject><subject>Reconstruction</subject><subject>Semantics</subject><subject>Training</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU2LFDEQhoMo7rj6BzxIgxcv0Xx2UhdBFr9gwIuCt5BO0mMvPclsqnth_72ZnXX9OHgqqHrqrXp5CXnO2WvOmHmDnCkLlAlBmQSrqH5ANlwbSY0C85BsGAhF-x6-n5EniJeMMSkZf0zOpAbgvYENiVs_pJnWFErGpa5hmUqmg8cUuwOmNRaK64Ch1NTNydc85V03ltr5W7K7Wv08LTedR0yI-5SXbsodHkpdjmS6bh18Sh6Nfsb07K6ek28f3n-9-ES3Xz5-vni3pUEZtVAlGFgNcfQBOKQIlmkb_dBzL200CUYuA8gwasOMUcNoYJBaxtE2V14weU7ennQP67BPMbTb1c_uUKe9rzeu-Mn9PcnTD7cr1w6kUdrqJvDqTqCWqzXh4vYThjTPPqeyohOGaQm9MKqhL_9BL8tac7PnhOXaKtGDbZQ4UaEWxJrG-2c4c8cQ3SlE10J0tyG64xcv_rRxv_IrtQbIE4BtlHep_r79H9mfJiCqkw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Zhang, Hong-Bo</creator><creator>Dong, Li-Jia</creator><creator>Lei, Qing</creator><creator>Yang, Li-Jie</creator><creator>Du, Ji-Xiang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2386-770X</orcidid></search><sort><creationdate>20230501</creationdate><title>Label-reconstruction-based pseudo-subscore learning for action quality assessment in sporting events</title><author>Zhang, Hong-Bo ; Dong, Li-Jia ; Lei, Qing ; Yang, Li-Jie ; Du, Ji-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4209859dfac919ed98058dab61a38d7e9f13c93cf570774bf79b353df8301a203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Educational films</topic><topic>Feedback</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Processes</topic><topic>Quality assessment</topic><topic>Reconstruction</topic><topic>Semantics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hong-Bo</creatorcontrib><creatorcontrib>Dong, Li-Jia</creatorcontrib><creatorcontrib>Lei, Qing</creatorcontrib><creatorcontrib>Yang, Li-Jie</creatorcontrib><creatorcontrib>Du, Ji-Xiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hong-Bo</au><au>Dong, Li-Jia</au><au>Lei, Qing</au><au>Yang, Li-Jie</au><au>Du, Ji-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-reconstruction-based pseudo-subscore learning for action quality assessment in sporting events</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><addtitle>Appl Intell (Dordr)</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>53</volume><issue>9</issue><spage>10053</spage><epage>10067</epage><pages>10053-10067</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Most existing action quality assessment (AQA) methods provide only an overall quality score for the input video and lack an evaluation of each substage of the movement process; thus, these methods cannot provide detailed feedback for users. Moreover, the existing datasets do not provide labels for substage quality assessment. To address these problems, in this work, a new label-reconstruction-based pseudo-subscore learning (PSL) method is proposed for AQA in sporting events. In the proposed method, the overall score of an action is not only regarded as a quality label but also used as a feature of the training set. A label-reconstruction-based learning algorithm is built to generate pseudo-subscore labels for the training set. Moreover, based on the pseudo-subscore labels and overall score labels, a multi-substage AQA model is fine-tuned from the PSL model to predict the action quality score of each substage and the overall score for an athlete. Several ablation experiments are performed to verify the effectiveness of each module. The experimental results show that our approach achieves state-of-the-art performance.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>35991679</pmid><doi>10.1007/s10489-022-03984-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2386-770X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2023-05, Vol.53 (9), p.10053-10067 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9374585 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ablation Algorithms Artificial Intelligence Computer Science Datasets Decomposition Educational films Feedback Labels Machine learning Machines Manufacturing Mechanical Engineering Methods Processes Quality assessment Reconstruction Semantics Training |
title | Label-reconstruction-based pseudo-subscore learning for action quality assessment in sporting events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-reconstruction-based%20pseudo-subscore%20learning%20for%20action%20quality%20assessment%20in%20sporting%20events&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Zhang,%20Hong-Bo&rft.date=2023-05-01&rft.volume=53&rft.issue=9&rft.spage=10053&rft.epage=10067&rft.pages=10053-10067&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-022-03984-5&rft_dat=%3Cproquest_pubme%3E2705396274%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815842698&rft_id=info:pmid/35991679&rfr_iscdi=true |