Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults
Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant co...
Gespeichert in:
Veröffentlicht in: | The Gerontologist 2022-08, Vol.62 (7), p.947-955 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 955 |
---|---|
container_issue | 7 |
container_start_page | 947 |
container_title | The Gerontologist |
container_volume | 62 |
creator | Chu, Charlene H Nyrup, Rune Leslie, Kathleen Shi, Jiamin Bianchi, Andria Lyn, Alexandra McNicholl, Molly Khan, Shehroz Rahimi, Samira Grenier, Amanda |
description | Abstract
Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice. |
doi_str_mv | 10.1093/geront/gnab167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9372891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/geront/gnab167</oup_id><sourcerecordid>2621657798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYMo7uzq1aM0eNFD7yaVTiftQRjGVRcW5qLgLaS7q3uzZJI2SQv-eyMzLurFU1FVXz3q8Qh5weglox2_mjEGn69mb3rWykdkw6RQteANe0w2lLK27ijjZ-Q8pXtaegD5lJxxQRvFGNuQr-_tbLNx1XZGmw5vq92dcQ79jKkyfqz2yxJiXr3Ntkysr7Yx28kOtpzc-IzO2Rn9gNUUYrV3I8ZqO64up2fkyWRcwuenekG-fLj-vPtU3-4_3uy2t_XQCMh1z1EpqShtO5iMUT2w8qVsmpY2TacEYz1yGICPRkzQQ9vhZOTQm0n1givgF-TdUXdZ-wOOA_ocjdNLtAcTf-hgrP574-2dnsN33XEJqmNF4PVJIIZvK6asDzYNxZjxGNakoQXWCik7VdBX_6D3YY2-2NMgKQgOAG2hLo_UEENKEaeHZxjVv0LTx9D0KbRy8PJPCw_475QK8OYIhHX5n9hPsRijjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702532226</pqid></control><display><type>article</type><title>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</title><source>Sociological Abstracts</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Chu, Charlene H ; Nyrup, Rune ; Leslie, Kathleen ; Shi, Jiamin ; Bianchi, Andria ; Lyn, Alexandra ; McNicholl, Molly ; Khan, Shehroz ; Rahimi, Samira ; Grenier, Amanda</creator><contributor>Meeks, Suzanne</contributor><creatorcontrib>Chu, Charlene H ; Nyrup, Rune ; Leslie, Kathleen ; Shi, Jiamin ; Bianchi, Andria ; Lyn, Alexandra ; McNicholl, Molly ; Khan, Shehroz ; Rahimi, Samira ; Grenier, Amanda ; Meeks, Suzanne</creatorcontrib><description>Abstract
Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.</description><identifier>ISSN: 0016-9013</identifier><identifier>EISSN: 1758-5341</identifier><identifier>DOI: 10.1093/geront/gnab167</identifier><identifier>PMID: 35048111</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Age discrimination ; Aging ; Artificial intelligence ; Bias ; Classism ; Digital technology ; Education work relationship ; Employment ; Forum ; Health care expenditures ; Health education ; Health services ; Inequality ; Older people ; Prediction models ; Racism ; Sexism ; Technology</subject><ispartof>The Gerontologist, 2022-08, Vol.62 (7), p.947-955</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Gerontological Society of America. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Gerontological Society of America.</rights><rights>Copyright Oxford University Press Sep 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</citedby><cites>FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</cites><orcidid>0000-0002-9880-6912 ; 0000-0002-1187-1990 ; 0000-0003-2251-6035 ; 0000-0003-3781-1360 ; 0000-0002-0333-7210 ; 0000-0003-0581-126X ; 0000-0002-1195-4999 ; 0000-0003-3802-0771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925,33774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35048111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Meeks, Suzanne</contributor><creatorcontrib>Chu, Charlene H</creatorcontrib><creatorcontrib>Nyrup, Rune</creatorcontrib><creatorcontrib>Leslie, Kathleen</creatorcontrib><creatorcontrib>Shi, Jiamin</creatorcontrib><creatorcontrib>Bianchi, Andria</creatorcontrib><creatorcontrib>Lyn, Alexandra</creatorcontrib><creatorcontrib>McNicholl, Molly</creatorcontrib><creatorcontrib>Khan, Shehroz</creatorcontrib><creatorcontrib>Rahimi, Samira</creatorcontrib><creatorcontrib>Grenier, Amanda</creatorcontrib><title>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</title><title>The Gerontologist</title><addtitle>Gerontologist</addtitle><description>Abstract
Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.</description><subject>Age discrimination</subject><subject>Aging</subject><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Classism</subject><subject>Digital technology</subject><subject>Education work relationship</subject><subject>Employment</subject><subject>Forum</subject><subject>Health care expenditures</subject><subject>Health education</subject><subject>Health services</subject><subject>Inequality</subject><subject>Older people</subject><subject>Prediction models</subject><subject>Racism</subject><subject>Sexism</subject><subject>Technology</subject><issn>0016-9013</issn><issn>1758-5341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>BHHNA</sourceid><recordid>eNqFkUGLFDEQhYMo7uzq1aM0eNFD7yaVTiftQRjGVRcW5qLgLaS7q3uzZJI2SQv-eyMzLurFU1FVXz3q8Qh5weglox2_mjEGn69mb3rWykdkw6RQteANe0w2lLK27ijjZ-Q8pXtaegD5lJxxQRvFGNuQr-_tbLNx1XZGmw5vq92dcQ79jKkyfqz2yxJiXr3Ntkysr7Yx28kOtpzc-IzO2Rn9gNUUYrV3I8ZqO64up2fkyWRcwuenekG-fLj-vPtU3-4_3uy2t_XQCMh1z1EpqShtO5iMUT2w8qVsmpY2TacEYz1yGICPRkzQQ9vhZOTQm0n1givgF-TdUXdZ-wOOA_ocjdNLtAcTf-hgrP574-2dnsN33XEJqmNF4PVJIIZvK6asDzYNxZjxGNakoQXWCik7VdBX_6D3YY2-2NMgKQgOAG2hLo_UEENKEaeHZxjVv0LTx9D0KbRy8PJPCw_475QK8OYIhHX5n9hPsRijjA</recordid><startdate>20220812</startdate><enddate>20220812</enddate><creator>Chu, Charlene H</creator><creator>Nyrup, Rune</creator><creator>Leslie, Kathleen</creator><creator>Shi, Jiamin</creator><creator>Bianchi, Andria</creator><creator>Lyn, Alexandra</creator><creator>McNicholl, Molly</creator><creator>Khan, Shehroz</creator><creator>Rahimi, Samira</creator><creator>Grenier, Amanda</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U3</scope><scope>7U4</scope><scope>ASE</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FPQ</scope><scope>K6X</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>WZK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9880-6912</orcidid><orcidid>https://orcid.org/0000-0002-1187-1990</orcidid><orcidid>https://orcid.org/0000-0003-2251-6035</orcidid><orcidid>https://orcid.org/0000-0003-3781-1360</orcidid><orcidid>https://orcid.org/0000-0002-0333-7210</orcidid><orcidid>https://orcid.org/0000-0003-0581-126X</orcidid><orcidid>https://orcid.org/0000-0002-1195-4999</orcidid><orcidid>https://orcid.org/0000-0003-3802-0771</orcidid></search><sort><creationdate>20220812</creationdate><title>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</title><author>Chu, Charlene H ; Nyrup, Rune ; Leslie, Kathleen ; Shi, Jiamin ; Bianchi, Andria ; Lyn, Alexandra ; McNicholl, Molly ; Khan, Shehroz ; Rahimi, Samira ; Grenier, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age discrimination</topic><topic>Aging</topic><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Classism</topic><topic>Digital technology</topic><topic>Education work relationship</topic><topic>Employment</topic><topic>Forum</topic><topic>Health care expenditures</topic><topic>Health education</topic><topic>Health services</topic><topic>Inequality</topic><topic>Older people</topic><topic>Prediction models</topic><topic>Racism</topic><topic>Sexism</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Charlene H</creatorcontrib><creatorcontrib>Nyrup, Rune</creatorcontrib><creatorcontrib>Leslie, Kathleen</creatorcontrib><creatorcontrib>Shi, Jiamin</creatorcontrib><creatorcontrib>Bianchi, Andria</creatorcontrib><creatorcontrib>Lyn, Alexandra</creatorcontrib><creatorcontrib>McNicholl, Molly</creatorcontrib><creatorcontrib>Khan, Shehroz</creatorcontrib><creatorcontrib>Rahimi, Samira</creatorcontrib><creatorcontrib>Grenier, Amanda</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Social Services Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>British Nursing Index</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>British Nursing Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Gerontologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Charlene H</au><au>Nyrup, Rune</au><au>Leslie, Kathleen</au><au>Shi, Jiamin</au><au>Bianchi, Andria</au><au>Lyn, Alexandra</au><au>McNicholl, Molly</au><au>Khan, Shehroz</au><au>Rahimi, Samira</au><au>Grenier, Amanda</au><au>Meeks, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</atitle><jtitle>The Gerontologist</jtitle><addtitle>Gerontologist</addtitle><date>2022-08-12</date><risdate>2022</risdate><volume>62</volume><issue>7</issue><spage>947</spage><epage>955</epage><pages>947-955</pages><issn>0016-9013</issn><eissn>1758-5341</eissn><abstract>Abstract
Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>35048111</pmid><doi>10.1093/geront/gnab167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9880-6912</orcidid><orcidid>https://orcid.org/0000-0002-1187-1990</orcidid><orcidid>https://orcid.org/0000-0003-2251-6035</orcidid><orcidid>https://orcid.org/0000-0003-3781-1360</orcidid><orcidid>https://orcid.org/0000-0002-0333-7210</orcidid><orcidid>https://orcid.org/0000-0003-0581-126X</orcidid><orcidid>https://orcid.org/0000-0002-1195-4999</orcidid><orcidid>https://orcid.org/0000-0003-3802-0771</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-9013 |
ispartof | The Gerontologist, 2022-08, Vol.62 (7), p.947-955 |
issn | 0016-9013 1758-5341 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9372891 |
source | Sociological Abstracts; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Age discrimination Aging Artificial intelligence Bias Classism Digital technology Education work relationship Employment Forum Health care expenditures Health education Health services Inequality Older people Prediction models Racism Sexism Technology |
title | Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Ageism:%20Challenges%20and%20Opportunities%20in%20Artificial%20Intelligence%20for%20Older%20Adults&rft.jtitle=The%20Gerontologist&rft.au=Chu,%20Charlene%20H&rft.date=2022-08-12&rft.volume=62&rft.issue=7&rft.spage=947&rft.epage=955&rft.pages=947-955&rft.issn=0016-9013&rft.eissn=1758-5341&rft_id=info:doi/10.1093/geront/gnab167&rft_dat=%3Cproquest_pubme%3E2621657798%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702532226&rft_id=info:pmid/35048111&rft_oup_id=10.1093/geront/gnab167&rfr_iscdi=true |