Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults

Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Gerontologist 2022-08, Vol.62 (7), p.947-955
Hauptverfasser: Chu, Charlene H, Nyrup, Rune, Leslie, Kathleen, Shi, Jiamin, Bianchi, Andria, Lyn, Alexandra, McNicholl, Molly, Khan, Shehroz, Rahimi, Samira, Grenier, Amanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 955
container_issue 7
container_start_page 947
container_title The Gerontologist
container_volume 62
creator Chu, Charlene H
Nyrup, Rune
Leslie, Kathleen
Shi, Jiamin
Bianchi, Andria
Lyn, Alexandra
McNicholl, Molly
Khan, Shehroz
Rahimi, Samira
Grenier, Amanda
description Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.
doi_str_mv 10.1093/geront/gnab167
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9372891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/geront/gnab167</oup_id><sourcerecordid>2621657798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhYMo7uzq1aM0eNFD7yaVTiftQRjGVRcW5qLgLaS7q3uzZJI2SQv-eyMzLurFU1FVXz3q8Qh5weglox2_mjEGn69mb3rWykdkw6RQteANe0w2lLK27ijjZ-Q8pXtaegD5lJxxQRvFGNuQr-_tbLNx1XZGmw5vq92dcQ79jKkyfqz2yxJiXr3Ntkysr7Yx28kOtpzc-IzO2Rn9gNUUYrV3I8ZqO64up2fkyWRcwuenekG-fLj-vPtU3-4_3uy2t_XQCMh1z1EpqShtO5iMUT2w8qVsmpY2TacEYz1yGICPRkzQQ9vhZOTQm0n1givgF-TdUXdZ-wOOA_ocjdNLtAcTf-hgrP574-2dnsN33XEJqmNF4PVJIIZvK6asDzYNxZjxGNakoQXWCik7VdBX_6D3YY2-2NMgKQgOAG2hLo_UEENKEaeHZxjVv0LTx9D0KbRy8PJPCw_475QK8OYIhHX5n9hPsRijjA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702532226</pqid></control><display><type>article</type><title>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</title><source>Sociological Abstracts</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Chu, Charlene H ; Nyrup, Rune ; Leslie, Kathleen ; Shi, Jiamin ; Bianchi, Andria ; Lyn, Alexandra ; McNicholl, Molly ; Khan, Shehroz ; Rahimi, Samira ; Grenier, Amanda</creator><contributor>Meeks, Suzanne</contributor><creatorcontrib>Chu, Charlene H ; Nyrup, Rune ; Leslie, Kathleen ; Shi, Jiamin ; Bianchi, Andria ; Lyn, Alexandra ; McNicholl, Molly ; Khan, Shehroz ; Rahimi, Samira ; Grenier, Amanda ; Meeks, Suzanne</creatorcontrib><description>Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.</description><identifier>ISSN: 0016-9013</identifier><identifier>EISSN: 1758-5341</identifier><identifier>DOI: 10.1093/geront/gnab167</identifier><identifier>PMID: 35048111</identifier><language>eng</language><publisher>US: Oxford University Press</publisher><subject>Age discrimination ; Aging ; Artificial intelligence ; Bias ; Classism ; Digital technology ; Education work relationship ; Employment ; Forum ; Health care expenditures ; Health education ; Health services ; Inequality ; Older people ; Prediction models ; Racism ; Sexism ; Technology</subject><ispartof>The Gerontologist, 2022-08, Vol.62 (7), p.947-955</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Gerontological Society of America. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of The Gerontological Society of America.</rights><rights>Copyright Oxford University Press Sep 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</citedby><cites>FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</cites><orcidid>0000-0002-9880-6912 ; 0000-0002-1187-1990 ; 0000-0003-2251-6035 ; 0000-0003-3781-1360 ; 0000-0002-0333-7210 ; 0000-0003-0581-126X ; 0000-0002-1195-4999 ; 0000-0003-3802-0771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1584,27924,27925,33774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35048111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Meeks, Suzanne</contributor><creatorcontrib>Chu, Charlene H</creatorcontrib><creatorcontrib>Nyrup, Rune</creatorcontrib><creatorcontrib>Leslie, Kathleen</creatorcontrib><creatorcontrib>Shi, Jiamin</creatorcontrib><creatorcontrib>Bianchi, Andria</creatorcontrib><creatorcontrib>Lyn, Alexandra</creatorcontrib><creatorcontrib>McNicholl, Molly</creatorcontrib><creatorcontrib>Khan, Shehroz</creatorcontrib><creatorcontrib>Rahimi, Samira</creatorcontrib><creatorcontrib>Grenier, Amanda</creatorcontrib><title>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</title><title>The Gerontologist</title><addtitle>Gerontologist</addtitle><description>Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.</description><subject>Age discrimination</subject><subject>Aging</subject><subject>Artificial intelligence</subject><subject>Bias</subject><subject>Classism</subject><subject>Digital technology</subject><subject>Education work relationship</subject><subject>Employment</subject><subject>Forum</subject><subject>Health care expenditures</subject><subject>Health education</subject><subject>Health services</subject><subject>Inequality</subject><subject>Older people</subject><subject>Prediction models</subject><subject>Racism</subject><subject>Sexism</subject><subject>Technology</subject><issn>0016-9013</issn><issn>1758-5341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>BHHNA</sourceid><recordid>eNqFkUGLFDEQhYMo7uzq1aM0eNFD7yaVTiftQRjGVRcW5qLgLaS7q3uzZJI2SQv-eyMzLurFU1FVXz3q8Qh5weglox2_mjEGn69mb3rWykdkw6RQteANe0w2lLK27ijjZ-Q8pXtaegD5lJxxQRvFGNuQr-_tbLNx1XZGmw5vq92dcQ79jKkyfqz2yxJiXr3Ntkysr7Yx28kOtpzc-IzO2Rn9gNUUYrV3I8ZqO64up2fkyWRcwuenekG-fLj-vPtU3-4_3uy2t_XQCMh1z1EpqShtO5iMUT2w8qVsmpY2TacEYz1yGICPRkzQQ9vhZOTQm0n1givgF-TdUXdZ-wOOA_ocjdNLtAcTf-hgrP574-2dnsN33XEJqmNF4PVJIIZvK6asDzYNxZjxGNakoQXWCik7VdBX_6D3YY2-2NMgKQgOAG2hLo_UEENKEaeHZxjVv0LTx9D0KbRy8PJPCw_475QK8OYIhHX5n9hPsRijjA</recordid><startdate>20220812</startdate><enddate>20220812</enddate><creator>Chu, Charlene H</creator><creator>Nyrup, Rune</creator><creator>Leslie, Kathleen</creator><creator>Shi, Jiamin</creator><creator>Bianchi, Andria</creator><creator>Lyn, Alexandra</creator><creator>McNicholl, Molly</creator><creator>Khan, Shehroz</creator><creator>Rahimi, Samira</creator><creator>Grenier, Amanda</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U3</scope><scope>7U4</scope><scope>ASE</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FPQ</scope><scope>K6X</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>WZK</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9880-6912</orcidid><orcidid>https://orcid.org/0000-0002-1187-1990</orcidid><orcidid>https://orcid.org/0000-0003-2251-6035</orcidid><orcidid>https://orcid.org/0000-0003-3781-1360</orcidid><orcidid>https://orcid.org/0000-0002-0333-7210</orcidid><orcidid>https://orcid.org/0000-0003-0581-126X</orcidid><orcidid>https://orcid.org/0000-0002-1195-4999</orcidid><orcidid>https://orcid.org/0000-0003-3802-0771</orcidid></search><sort><creationdate>20220812</creationdate><title>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</title><author>Chu, Charlene H ; Nyrup, Rune ; Leslie, Kathleen ; Shi, Jiamin ; Bianchi, Andria ; Lyn, Alexandra ; McNicholl, Molly ; Khan, Shehroz ; Rahimi, Samira ; Grenier, Amanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-b3e887800692faa8b21001744604498511be32c23da5f2b269efa7cbaf8b53823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age discrimination</topic><topic>Aging</topic><topic>Artificial intelligence</topic><topic>Bias</topic><topic>Classism</topic><topic>Digital technology</topic><topic>Education work relationship</topic><topic>Employment</topic><topic>Forum</topic><topic>Health care expenditures</topic><topic>Health education</topic><topic>Health services</topic><topic>Inequality</topic><topic>Older people</topic><topic>Prediction models</topic><topic>Racism</topic><topic>Sexism</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Charlene H</creatorcontrib><creatorcontrib>Nyrup, Rune</creatorcontrib><creatorcontrib>Leslie, Kathleen</creatorcontrib><creatorcontrib>Shi, Jiamin</creatorcontrib><creatorcontrib>Bianchi, Andria</creatorcontrib><creatorcontrib>Lyn, Alexandra</creatorcontrib><creatorcontrib>McNicholl, Molly</creatorcontrib><creatorcontrib>Khan, Shehroz</creatorcontrib><creatorcontrib>Rahimi, Samira</creatorcontrib><creatorcontrib>Grenier, Amanda</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Social Services Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>British Nursing Index</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>British Nursing Index (BNI) (1985 to Present)</collection><collection>British Nursing Index</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Gerontologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Charlene H</au><au>Nyrup, Rune</au><au>Leslie, Kathleen</au><au>Shi, Jiamin</au><au>Bianchi, Andria</au><au>Lyn, Alexandra</au><au>McNicholl, Molly</au><au>Khan, Shehroz</au><au>Rahimi, Samira</au><au>Grenier, Amanda</au><au>Meeks, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults</atitle><jtitle>The Gerontologist</jtitle><addtitle>Gerontologist</addtitle><date>2022-08-12</date><risdate>2022</risdate><volume>62</volume><issue>7</issue><spage>947</spage><epage>955</epage><pages>947-955</pages><issn>0016-9013</issn><eissn>1758-5341</eissn><abstract>Abstract Artificial intelligence (AI) and machine learning are changing our world through their impact on sectors including health care, education, employment, finance, and law. AI systems are developed using data that reflect the implicit and explicit biases of society, and there are significant concerns about how the predictive models in AI systems amplify inequity, privilege, and power in society. The widespread applications of AI have led to mainstream discourse about how AI systems are perpetuating racism, sexism, and classism; yet, concerns about ageism have been largely absent in the AI bias literature. Given the globally aging population and proliferation of AI, there is a need to critically examine the presence of age-related bias in AI systems. This forum article discusses ageism in AI systems and introduces a conceptual model that outlines intersecting pathways of technology development that can produce and reinforce digital ageism in AI systems. We also describe the broader ethical and legal implications and considerations for future directions in digital ageism research to advance knowledge in the field and deepen our understanding of how ageism in AI is fostered by broader cycles of injustice.</abstract><cop>US</cop><pub>Oxford University Press</pub><pmid>35048111</pmid><doi>10.1093/geront/gnab167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9880-6912</orcidid><orcidid>https://orcid.org/0000-0002-1187-1990</orcidid><orcidid>https://orcid.org/0000-0003-2251-6035</orcidid><orcidid>https://orcid.org/0000-0003-3781-1360</orcidid><orcidid>https://orcid.org/0000-0002-0333-7210</orcidid><orcidid>https://orcid.org/0000-0003-0581-126X</orcidid><orcidid>https://orcid.org/0000-0002-1195-4999</orcidid><orcidid>https://orcid.org/0000-0003-3802-0771</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-9013
ispartof The Gerontologist, 2022-08, Vol.62 (7), p.947-955
issn 0016-9013
1758-5341
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9372891
source Sociological Abstracts; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Age discrimination
Aging
Artificial intelligence
Bias
Classism
Digital technology
Education work relationship
Employment
Forum
Health care expenditures
Health education
Health services
Inequality
Older people
Prediction models
Racism
Sexism
Technology
title Digital Ageism: Challenges and Opportunities in Artificial Intelligence for Older Adults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Ageism:%20Challenges%20and%20Opportunities%20in%20Artificial%20Intelligence%20for%20Older%20Adults&rft.jtitle=The%20Gerontologist&rft.au=Chu,%20Charlene%20H&rft.date=2022-08-12&rft.volume=62&rft.issue=7&rft.spage=947&rft.epage=955&rft.pages=947-955&rft.issn=0016-9013&rft.eissn=1758-5341&rft_id=info:doi/10.1093/geront/gnab167&rft_dat=%3Cproquest_pubme%3E2621657798%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702532226&rft_id=info:pmid/35048111&rft_oup_id=10.1093/geront/gnab167&rfr_iscdi=true