A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms

The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-07, Vol.14 (15), p.3097
Hauptverfasser: Khan, Kaffayatullah, Iqbal, Mudassir, Biswas, Rahul, Amin, Muhammad Nasir, Ali, Sajid, Gudainiyan, Jitendra, Alabdullah, Anas Abdulalim, Arab, Abdullah Mohammad Abu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3097
container_title Polymers
container_volume 14
creator Khan, Kaffayatullah
Iqbal, Mudassir
Biswas, Rahul
Amin, Muhammad Nasir
Ali, Sajid
Gudainiyan, Jitendra
Alabdullah, Anas Abdulalim
Arab, Abdullah Mohammad Abu
description The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.
doi_str_mv 10.3390/polym14153097
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700761193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</originalsourceid><addsrcrecordid>eNpdkUtv3CAUhVHVqonSLLtH6qYbJ2BsA5tKySgvaapG6WOLMFxniDBMgUk7_yA_u0wSVU3vhiOdcz8QB6H3lBwxJsnxOvrtTDvaMyL5K7TfEs6ajg3k9T96Dx3mfEfqdP0wUP4W7bFe7iTdRw8n-HI7Jmfx1x83zanOYPF1AutMcTHgz9GCx1NMuKwAX4UCadLGaY9PY6g7JUG4LSscJ3z2u5pBe7999Crn_OYaL_Xsgi6QcaVdpBjvq_zl6soiBpOgQL3O5Tm_Q28m7TMcPp8H6Pv52bfFZbP8cnG1OFk2hsm2NNPQGbDUCDsJ3msGeurHbpSdoVwIKUTXGiY6yUZLQNh2NJxCP9rB7GaS7AB9euKuN-MM1kAoSXu1Tm7WaauiduqlE9xK3cZ7JRknXPAK-PgMSPHnBnJRs8sGvNcB4iarlpOWCiLJUKMf_ovexc3ujx5ThNcGJKup5illUsw5wfT3MZSoXc3qRc3sD6Z3nBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700761193</pqid></control><display><type>article</type><title>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Khan, Kaffayatullah ; Iqbal, Mudassir ; Biswas, Rahul ; Amin, Muhammad Nasir ; Ali, Sajid ; Gudainiyan, Jitendra ; Alabdullah, Anas Abdulalim ; Arab, Abdullah Mohammad Abu</creator><creatorcontrib>Khan, Kaffayatullah ; Iqbal, Mudassir ; Biswas, Rahul ; Amin, Muhammad Nasir ; Ali, Sajid ; Gudainiyan, Jitendra ; Alabdullah, Anas Abdulalim ; Arab, Abdullah Mohammad Abu</creatorcontrib><description>The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14153097</identifier><identifier>PMID: 35956611</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Bonding strength ; Comparative studies ; Concrete ; Electromagnetism ; Engineering ; Failure ; Fiber reinforced plastics ; Fiber reinforced polymers ; Genetic algorithms ; Grooves ; Heuristic methods ; Laminates ; Neural networks ; Optimization algorithms ; Particle swarm optimization ; Prediction models ; Prisms ; Reinforced concrete ; Shear strength ; Shear tests ; Support vector machines ; Training</subject><ispartof>Polymers, 2022-07, Vol.14 (15), p.3097</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</citedby><cites>FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</cites><orcidid>0000-0002-0609-068X ; 0000-0002-4317-3978 ; 0000-0001-8697-7565 ; 0000-0001-7994-4642 ; 0000-0001-6524-4389 ; 0000-0003-3451-1047 ; 0000-0001-7728-4695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370787/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370787/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Khan, Kaffayatullah</creatorcontrib><creatorcontrib>Iqbal, Mudassir</creatorcontrib><creatorcontrib>Biswas, Rahul</creatorcontrib><creatorcontrib>Amin, Muhammad Nasir</creatorcontrib><creatorcontrib>Ali, Sajid</creatorcontrib><creatorcontrib>Gudainiyan, Jitendra</creatorcontrib><creatorcontrib>Alabdullah, Anas Abdulalim</creatorcontrib><creatorcontrib>Arab, Abdullah Mohammad Abu</creatorcontrib><title>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</title><title>Polymers</title><description>The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bonding strength</subject><subject>Comparative studies</subject><subject>Concrete</subject><subject>Electromagnetism</subject><subject>Engineering</subject><subject>Failure</subject><subject>Fiber reinforced plastics</subject><subject>Fiber reinforced polymers</subject><subject>Genetic algorithms</subject><subject>Grooves</subject><subject>Heuristic methods</subject><subject>Laminates</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Prediction models</subject><subject>Prisms</subject><subject>Reinforced concrete</subject><subject>Shear strength</subject><subject>Shear tests</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtv3CAUhVHVqonSLLtH6qYbJ2BsA5tKySgvaapG6WOLMFxniDBMgUk7_yA_u0wSVU3vhiOdcz8QB6H3lBwxJsnxOvrtTDvaMyL5K7TfEs6ajg3k9T96Dx3mfEfqdP0wUP4W7bFe7iTdRw8n-HI7Jmfx1x83zanOYPF1AutMcTHgz9GCx1NMuKwAX4UCadLGaY9PY6g7JUG4LSscJ3z2u5pBe7999Crn_OYaL_Xsgi6QcaVdpBjvq_zl6soiBpOgQL3O5Tm_Q28m7TMcPp8H6Pv52bfFZbP8cnG1OFk2hsm2NNPQGbDUCDsJ3msGeurHbpSdoVwIKUTXGiY6yUZLQNh2NJxCP9rB7GaS7AB9euKuN-MM1kAoSXu1Tm7WaauiduqlE9xK3cZ7JRknXPAK-PgMSPHnBnJRs8sGvNcB4iarlpOWCiLJUKMf_ovexc3ujx5ThNcGJKup5illUsw5wfT3MZSoXc3qRc3sD6Z3nBM</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>Khan, Kaffayatullah</creator><creator>Iqbal, Mudassir</creator><creator>Biswas, Rahul</creator><creator>Amin, Muhammad Nasir</creator><creator>Ali, Sajid</creator><creator>Gudainiyan, Jitendra</creator><creator>Alabdullah, Anas Abdulalim</creator><creator>Arab, Abdullah Mohammad Abu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0609-068X</orcidid><orcidid>https://orcid.org/0000-0002-4317-3978</orcidid><orcidid>https://orcid.org/0000-0001-8697-7565</orcidid><orcidid>https://orcid.org/0000-0001-7994-4642</orcidid><orcidid>https://orcid.org/0000-0001-6524-4389</orcidid><orcidid>https://orcid.org/0000-0003-3451-1047</orcidid><orcidid>https://orcid.org/0000-0001-7728-4695</orcidid></search><sort><creationdate>20220729</creationdate><title>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</title><author>Khan, Kaffayatullah ; Iqbal, Mudassir ; Biswas, Rahul ; Amin, Muhammad Nasir ; Ali, Sajid ; Gudainiyan, Jitendra ; Alabdullah, Anas Abdulalim ; Arab, Abdullah Mohammad Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bonding strength</topic><topic>Comparative studies</topic><topic>Concrete</topic><topic>Electromagnetism</topic><topic>Engineering</topic><topic>Failure</topic><topic>Fiber reinforced plastics</topic><topic>Fiber reinforced polymers</topic><topic>Genetic algorithms</topic><topic>Grooves</topic><topic>Heuristic methods</topic><topic>Laminates</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Prediction models</topic><topic>Prisms</topic><topic>Reinforced concrete</topic><topic>Shear strength</topic><topic>Shear tests</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Kaffayatullah</creatorcontrib><creatorcontrib>Iqbal, Mudassir</creatorcontrib><creatorcontrib>Biswas, Rahul</creatorcontrib><creatorcontrib>Amin, Muhammad Nasir</creatorcontrib><creatorcontrib>Ali, Sajid</creatorcontrib><creatorcontrib>Gudainiyan, Jitendra</creatorcontrib><creatorcontrib>Alabdullah, Anas Abdulalim</creatorcontrib><creatorcontrib>Arab, Abdullah Mohammad Abu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Kaffayatullah</au><au>Iqbal, Mudassir</au><au>Biswas, Rahul</au><au>Amin, Muhammad Nasir</au><au>Ali, Sajid</au><au>Gudainiyan, Jitendra</au><au>Alabdullah, Anas Abdulalim</au><au>Arab, Abdullah Mohammad Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</atitle><jtitle>Polymers</jtitle><date>2022-07-29</date><risdate>2022</risdate><volume>14</volume><issue>15</issue><spage>3097</spage><pages>3097-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35956611</pmid><doi>10.3390/polym14153097</doi><orcidid>https://orcid.org/0000-0002-0609-068X</orcidid><orcidid>https://orcid.org/0000-0002-4317-3978</orcidid><orcidid>https://orcid.org/0000-0001-8697-7565</orcidid><orcidid>https://orcid.org/0000-0001-7994-4642</orcidid><orcidid>https://orcid.org/0000-0001-6524-4389</orcidid><orcidid>https://orcid.org/0000-0003-3451-1047</orcidid><orcidid>https://orcid.org/0000-0001-7728-4695</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2022-07, Vol.14 (15), p.3097
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370787
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Artificial intelligence
Bonding strength
Comparative studies
Concrete
Electromagnetism
Engineering
Failure
Fiber reinforced plastics
Fiber reinforced polymers
Genetic algorithms
Grooves
Heuristic methods
Laminates
Neural networks
Optimization algorithms
Particle swarm optimization
Prediction models
Prisms
Reinforced concrete
Shear strength
Shear tests
Support vector machines
Training
title A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20SVR-Based%20Prediction%20Model%20for%20the%20Interfacial%20Bond%20Strength%20of%20Externally%20Bonded%20FRP%20Laminates%20on%20Grooves%20with%20Concrete%20Prisms&rft.jtitle=Polymers&rft.au=Khan,%20Kaffayatullah&rft.date=2022-07-29&rft.volume=14&rft.issue=15&rft.spage=3097&rft.pages=3097-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14153097&rft_dat=%3Cproquest_pubme%3E2700761193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700761193&rft_id=info:pmid/35956611&rfr_iscdi=true