A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms
The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experi...
Gespeichert in:
Veröffentlicht in: | Polymers 2022-07, Vol.14 (15), p.3097 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3097 |
container_title | Polymers |
container_volume | 14 |
creator | Khan, Kaffayatullah Iqbal, Mudassir Biswas, Rahul Amin, Muhammad Nasir Ali, Sajid Gudainiyan, Jitendra Alabdullah, Anas Abdulalim Arab, Abdullah Mohammad Abu |
description | The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects. |
doi_str_mv | 10.3390/polym14153097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700761193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</originalsourceid><addsrcrecordid>eNpdkUtv3CAUhVHVqonSLLtH6qYbJ2BsA5tKySgvaapG6WOLMFxniDBMgUk7_yA_u0wSVU3vhiOdcz8QB6H3lBwxJsnxOvrtTDvaMyL5K7TfEs6ajg3k9T96Dx3mfEfqdP0wUP4W7bFe7iTdRw8n-HI7Jmfx1x83zanOYPF1AutMcTHgz9GCx1NMuKwAX4UCadLGaY9PY6g7JUG4LSscJ3z2u5pBe7999Crn_OYaL_Xsgi6QcaVdpBjvq_zl6soiBpOgQL3O5Tm_Q28m7TMcPp8H6Pv52bfFZbP8cnG1OFk2hsm2NNPQGbDUCDsJ3msGeurHbpSdoVwIKUTXGiY6yUZLQNh2NJxCP9rB7GaS7AB9euKuN-MM1kAoSXu1Tm7WaauiduqlE9xK3cZ7JRknXPAK-PgMSPHnBnJRs8sGvNcB4iarlpOWCiLJUKMf_ovexc3ujx5ThNcGJKup5illUsw5wfT3MZSoXc3qRc3sD6Z3nBM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700761193</pqid></control><display><type>article</type><title>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Khan, Kaffayatullah ; Iqbal, Mudassir ; Biswas, Rahul ; Amin, Muhammad Nasir ; Ali, Sajid ; Gudainiyan, Jitendra ; Alabdullah, Anas Abdulalim ; Arab, Abdullah Mohammad Abu</creator><creatorcontrib>Khan, Kaffayatullah ; Iqbal, Mudassir ; Biswas, Rahul ; Amin, Muhammad Nasir ; Ali, Sajid ; Gudainiyan, Jitendra ; Alabdullah, Anas Abdulalim ; Arab, Abdullah Mohammad Abu</creatorcontrib><description>The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym14153097</identifier><identifier>PMID: 35956611</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Bonding strength ; Comparative studies ; Concrete ; Electromagnetism ; Engineering ; Failure ; Fiber reinforced plastics ; Fiber reinforced polymers ; Genetic algorithms ; Grooves ; Heuristic methods ; Laminates ; Neural networks ; Optimization algorithms ; Particle swarm optimization ; Prediction models ; Prisms ; Reinforced concrete ; Shear strength ; Shear tests ; Support vector machines ; Training</subject><ispartof>Polymers, 2022-07, Vol.14 (15), p.3097</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</citedby><cites>FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</cites><orcidid>0000-0002-0609-068X ; 0000-0002-4317-3978 ; 0000-0001-8697-7565 ; 0000-0001-7994-4642 ; 0000-0001-6524-4389 ; 0000-0003-3451-1047 ; 0000-0001-7728-4695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370787/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370787/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Khan, Kaffayatullah</creatorcontrib><creatorcontrib>Iqbal, Mudassir</creatorcontrib><creatorcontrib>Biswas, Rahul</creatorcontrib><creatorcontrib>Amin, Muhammad Nasir</creatorcontrib><creatorcontrib>Ali, Sajid</creatorcontrib><creatorcontrib>Gudainiyan, Jitendra</creatorcontrib><creatorcontrib>Alabdullah, Anas Abdulalim</creatorcontrib><creatorcontrib>Arab, Abdullah Mohammad Abu</creatorcontrib><title>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</title><title>Polymers</title><description>The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bonding strength</subject><subject>Comparative studies</subject><subject>Concrete</subject><subject>Electromagnetism</subject><subject>Engineering</subject><subject>Failure</subject><subject>Fiber reinforced plastics</subject><subject>Fiber reinforced polymers</subject><subject>Genetic algorithms</subject><subject>Grooves</subject><subject>Heuristic methods</subject><subject>Laminates</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Prediction models</subject><subject>Prisms</subject><subject>Reinforced concrete</subject><subject>Shear strength</subject><subject>Shear tests</subject><subject>Support vector machines</subject><subject>Training</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtv3CAUhVHVqonSLLtH6qYbJ2BsA5tKySgvaapG6WOLMFxniDBMgUk7_yA_u0wSVU3vhiOdcz8QB6H3lBwxJsnxOvrtTDvaMyL5K7TfEs6ajg3k9T96Dx3mfEfqdP0wUP4W7bFe7iTdRw8n-HI7Jmfx1x83zanOYPF1AutMcTHgz9GCx1NMuKwAX4UCadLGaY9PY6g7JUG4LSscJ3z2u5pBe7999Crn_OYaL_Xsgi6QcaVdpBjvq_zl6soiBpOgQL3O5Tm_Q28m7TMcPp8H6Pv52bfFZbP8cnG1OFk2hsm2NNPQGbDUCDsJ3msGeurHbpSdoVwIKUTXGiY6yUZLQNh2NJxCP9rB7GaS7AB9euKuN-MM1kAoSXu1Tm7WaauiduqlE9xK3cZ7JRknXPAK-PgMSPHnBnJRs8sGvNcB4iarlpOWCiLJUKMf_ovexc3ujx5ThNcGJKup5illUsw5wfT3MZSoXc3qRc3sD6Z3nBM</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>Khan, Kaffayatullah</creator><creator>Iqbal, Mudassir</creator><creator>Biswas, Rahul</creator><creator>Amin, Muhammad Nasir</creator><creator>Ali, Sajid</creator><creator>Gudainiyan, Jitendra</creator><creator>Alabdullah, Anas Abdulalim</creator><creator>Arab, Abdullah Mohammad Abu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0609-068X</orcidid><orcidid>https://orcid.org/0000-0002-4317-3978</orcidid><orcidid>https://orcid.org/0000-0001-8697-7565</orcidid><orcidid>https://orcid.org/0000-0001-7994-4642</orcidid><orcidid>https://orcid.org/0000-0001-6524-4389</orcidid><orcidid>https://orcid.org/0000-0003-3451-1047</orcidid><orcidid>https://orcid.org/0000-0001-7728-4695</orcidid></search><sort><creationdate>20220729</creationdate><title>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</title><author>Khan, Kaffayatullah ; Iqbal, Mudassir ; Biswas, Rahul ; Amin, Muhammad Nasir ; Ali, Sajid ; Gudainiyan, Jitendra ; Alabdullah, Anas Abdulalim ; Arab, Abdullah Mohammad Abu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f64ced1c8df875a3eaf5b4b94c178898842c38493bd0e8d2bc71e5bd6cccccf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bonding strength</topic><topic>Comparative studies</topic><topic>Concrete</topic><topic>Electromagnetism</topic><topic>Engineering</topic><topic>Failure</topic><topic>Fiber reinforced plastics</topic><topic>Fiber reinforced polymers</topic><topic>Genetic algorithms</topic><topic>Grooves</topic><topic>Heuristic methods</topic><topic>Laminates</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Prediction models</topic><topic>Prisms</topic><topic>Reinforced concrete</topic><topic>Shear strength</topic><topic>Shear tests</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Kaffayatullah</creatorcontrib><creatorcontrib>Iqbal, Mudassir</creatorcontrib><creatorcontrib>Biswas, Rahul</creatorcontrib><creatorcontrib>Amin, Muhammad Nasir</creatorcontrib><creatorcontrib>Ali, Sajid</creatorcontrib><creatorcontrib>Gudainiyan, Jitendra</creatorcontrib><creatorcontrib>Alabdullah, Anas Abdulalim</creatorcontrib><creatorcontrib>Arab, Abdullah Mohammad Abu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Kaffayatullah</au><au>Iqbal, Mudassir</au><au>Biswas, Rahul</au><au>Amin, Muhammad Nasir</au><au>Ali, Sajid</au><au>Gudainiyan, Jitendra</au><au>Alabdullah, Anas Abdulalim</au><au>Arab, Abdullah Mohammad Abu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms</atitle><jtitle>Polymers</jtitle><date>2022-07-29</date><risdate>2022</risdate><volume>14</volume><issue>15</issue><spage>3097</spage><pages>3097-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The current work presents a comparative study of hybrid models that use support vector machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset containing 136 experimental tests was first collected from the available literature for the development of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer, the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used; five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated. The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase. Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and 0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of FRP concrete in civil engineering projects.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35956611</pmid><doi>10.3390/polym14153097</doi><orcidid>https://orcid.org/0000-0002-0609-068X</orcidid><orcidid>https://orcid.org/0000-0002-4317-3978</orcidid><orcidid>https://orcid.org/0000-0001-8697-7565</orcidid><orcidid>https://orcid.org/0000-0001-7994-4642</orcidid><orcidid>https://orcid.org/0000-0001-6524-4389</orcidid><orcidid>https://orcid.org/0000-0003-3451-1047</orcidid><orcidid>https://orcid.org/0000-0001-7728-4695</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2022-07, Vol.14 (15), p.3097 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370787 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Artificial intelligence Bonding strength Comparative studies Concrete Electromagnetism Engineering Failure Fiber reinforced plastics Fiber reinforced polymers Genetic algorithms Grooves Heuristic methods Laminates Neural networks Optimization algorithms Particle swarm optimization Prediction models Prisms Reinforced concrete Shear strength Shear tests Support vector machines Training |
title | A Hybrid SVR-Based Prediction Model for the Interfacial Bond Strength of Externally Bonded FRP Laminates on Grooves with Concrete Prisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20SVR-Based%20Prediction%20Model%20for%20the%20Interfacial%20Bond%20Strength%20of%20Externally%20Bonded%20FRP%20Laminates%20on%20Grooves%20with%20Concrete%20Prisms&rft.jtitle=Polymers&rft.au=Khan,%20Kaffayatullah&rft.date=2022-07-29&rft.volume=14&rft.issue=15&rft.spage=3097&rft.pages=3097-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym14153097&rft_dat=%3Cproquest_pubme%3E2700761193%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700761193&rft_id=info:pmid/35956611&rfr_iscdi=true |