Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics
Long-time dynamical processes, such as those involving protein unfolding and ligand interactions, can be accelerated and realized through steered molecular dynamics (SMD). The challenge has been the extraction of information from such simulations that generalize for complex nonequilibrium processes....
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2022-08, Vol.18 (8), p.4649-4659 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4659 |
---|---|
container_issue | 8 |
container_start_page | 4649 |
container_title | Journal of chemical theory and computation |
container_volume | 18 |
creator | Zhuang, Yi Thota, Nikhil Quirk, Stephen Hernandez, Rigoberto |
description | Long-time dynamical processes, such as those involving protein unfolding and ligand interactions, can be accelerated and realized through steered molecular dynamics (SMD). The challenge has been the extraction of information from such simulations that generalize for complex nonequilibrium processes. The use of Jarzynski’s equality opened the possibility of determining the free energy along the steered coordinate, but sampling over the nonequilibrium trajectories is slow to converge. Adaptive steered molecular dynamics (ASMD) and other related techniques have been introduced to overcome this challenge through the use of stages. Here, we take advantage of these stages to address the numerical cost that arises from the required use of very large solvent boxes. We introduce telescoping box schemes within adaptive steered molecular dynamics (ASMD) in which we adjust the solvent box between stages and thereby vary (and optimize) the required number of solvent molecules. We have benchmarked the method on a relatively long α-helical peptide, Ala30, with respect to the potential of mean force and hydrogen bonds. We show that the use of telescoping boxes introduces little numerical error while significantly reducing the computational cost. |
doi_str_mv | 10.1021/acs.jctc.2c00498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9369075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689060976</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527t-a9e354a3112fa61c13c96f805ba509cac6663ec9cfdb9bce03238f91046b0dbc3</originalsourceid><addsrcrecordid>eNp1kc1v1DAQxS1E1ZbSOycUiUsP7HZsJ058QSqFfqkVB8rZciaT4lUSBzup2v8el92uKBJz8Uj-vTczeoy947DkIPixxbhc4YRLgQC5rl6xfV7keqGVUK-3Pa_22JsYVwBS5kLusj1ZVBKkqvbZ1WU_dtTTMNnJ-SHzbXZLHUX0oxvuss_-gWLmhuyksePk7in7PhEFarIb3xHOnQ3Zl8fB9g7jW7bT2i7S4eY9YD_Ovt6eXiyuv51fnp5cL2whymlhNckit5Jz0VrFkUvUqq2gqG0BGi0qpSShxrapdY0EUsiq1RxyVUNTozxgn9a-41z31GDaPdjOjMH1Njwab515-TO4n-bO3xstlYaySAZHG4Pgf80UJ9O7iNR1diA_RyNUpUGBLlVCP_yDrvwchnSeESVAqUWqRMGawuBjDNRul-FgnoIyKSjzFJTZBJUk7_8-Yit4TiYBH9fAH-nz0P_6_QaWp6BI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700792222</pqid></control><display><type>article</type><title>Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics</title><source>ACS Publications</source><source>MEDLINE</source><creator>Zhuang, Yi ; Thota, Nikhil ; Quirk, Stephen ; Hernandez, Rigoberto</creator><creatorcontrib>Zhuang, Yi ; Thota, Nikhil ; Quirk, Stephen ; Hernandez, Rigoberto</creatorcontrib><description>Long-time dynamical processes, such as those involving protein unfolding and ligand interactions, can be accelerated and realized through steered molecular dynamics (SMD). The challenge has been the extraction of information from such simulations that generalize for complex nonequilibrium processes. The use of Jarzynski’s equality opened the possibility of determining the free energy along the steered coordinate, but sampling over the nonequilibrium trajectories is slow to converge. Adaptive steered molecular dynamics (ASMD) and other related techniques have been introduced to overcome this challenge through the use of stages. Here, we take advantage of these stages to address the numerical cost that arises from the required use of very large solvent boxes. We introduce telescoping box schemes within adaptive steered molecular dynamics (ASMD) in which we adjust the solvent box between stages and thereby vary (and optimize) the required number of solvent molecules. We have benchmarked the method on a relatively long α-helical peptide, Ala30, with respect to the potential of mean force and hydrogen bonds. We show that the use of telescoping boxes introduces little numerical error while significantly reducing the computational cost.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00498</identifier><identifier>PMID: 35830368</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Boxes ; Computing costs ; Error reduction ; Free energy ; Hydrogen Bonding ; Hydrogen bonds ; Ligands ; Molecular dynamics ; Molecular Dynamics Simulation ; Solvents ; Statistical Mechanics ; Telescoping ; Thermodynamics</subject><ispartof>Journal of chemical theory and computation, 2022-08, Vol.18 (8), p.4649-4659</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Aug 9, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a527t-a9e354a3112fa61c13c96f805ba509cac6663ec9cfdb9bce03238f91046b0dbc3</citedby><cites>FETCH-LOGICAL-a527t-a9e354a3112fa61c13c96f805ba509cac6663ec9cfdb9bce03238f91046b0dbc3</cites><orcidid>0000-0002-4497-1023 ; 0000-0002-2149-6485 ; 0000-0001-8526-7414 ; 0000-0003-1472-9647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00498$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00498$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35830368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuang, Yi</creatorcontrib><creatorcontrib>Thota, Nikhil</creatorcontrib><creatorcontrib>Quirk, Stephen</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><title>Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Long-time dynamical processes, such as those involving protein unfolding and ligand interactions, can be accelerated and realized through steered molecular dynamics (SMD). The challenge has been the extraction of information from such simulations that generalize for complex nonequilibrium processes. The use of Jarzynski’s equality opened the possibility of determining the free energy along the steered coordinate, but sampling over the nonequilibrium trajectories is slow to converge. Adaptive steered molecular dynamics (ASMD) and other related techniques have been introduced to overcome this challenge through the use of stages. Here, we take advantage of these stages to address the numerical cost that arises from the required use of very large solvent boxes. We introduce telescoping box schemes within adaptive steered molecular dynamics (ASMD) in which we adjust the solvent box between stages and thereby vary (and optimize) the required number of solvent molecules. We have benchmarked the method on a relatively long α-helical peptide, Ala30, with respect to the potential of mean force and hydrogen bonds. We show that the use of telescoping boxes introduces little numerical error while significantly reducing the computational cost.</description><subject>Boxes</subject><subject>Computing costs</subject><subject>Error reduction</subject><subject>Free energy</subject><subject>Hydrogen Bonding</subject><subject>Hydrogen bonds</subject><subject>Ligands</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Solvents</subject><subject>Statistical Mechanics</subject><subject>Telescoping</subject><subject>Thermodynamics</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1v1DAQxS1E1ZbSOycUiUsP7HZsJ058QSqFfqkVB8rZciaT4lUSBzup2v8el92uKBJz8Uj-vTczeoy947DkIPixxbhc4YRLgQC5rl6xfV7keqGVUK-3Pa_22JsYVwBS5kLusj1ZVBKkqvbZ1WU_dtTTMNnJ-SHzbXZLHUX0oxvuss_-gWLmhuyksePk7in7PhEFarIb3xHOnQ3Zl8fB9g7jW7bT2i7S4eY9YD_Ovt6eXiyuv51fnp5cL2whymlhNckit5Jz0VrFkUvUqq2gqG0BGi0qpSShxrapdY0EUsiq1RxyVUNTozxgn9a-41z31GDaPdjOjMH1Njwab515-TO4n-bO3xstlYaySAZHG4Pgf80UJ9O7iNR1diA_RyNUpUGBLlVCP_yDrvwchnSeESVAqUWqRMGawuBjDNRul-FgnoIyKSjzFJTZBJUk7_8-Yit4TiYBH9fAH-nz0P_6_QaWp6BI</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>Zhuang, Yi</creator><creator>Thota, Nikhil</creator><creator>Quirk, Stephen</creator><creator>Hernandez, Rigoberto</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4497-1023</orcidid><orcidid>https://orcid.org/0000-0002-2149-6485</orcidid><orcidid>https://orcid.org/0000-0001-8526-7414</orcidid><orcidid>https://orcid.org/0000-0003-1472-9647</orcidid></search><sort><creationdate>20220809</creationdate><title>Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics</title><author>Zhuang, Yi ; Thota, Nikhil ; Quirk, Stephen ; Hernandez, Rigoberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527t-a9e354a3112fa61c13c96f805ba509cac6663ec9cfdb9bce03238f91046b0dbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boxes</topic><topic>Computing costs</topic><topic>Error reduction</topic><topic>Free energy</topic><topic>Hydrogen Bonding</topic><topic>Hydrogen bonds</topic><topic>Ligands</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Solvents</topic><topic>Statistical Mechanics</topic><topic>Telescoping</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Yi</creatorcontrib><creatorcontrib>Thota, Nikhil</creatorcontrib><creatorcontrib>Quirk, Stephen</creatorcontrib><creatorcontrib>Hernandez, Rigoberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Yi</au><au>Thota, Nikhil</au><au>Quirk, Stephen</au><au>Hernandez, Rigoberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2022-08-09</date><risdate>2022</risdate><volume>18</volume><issue>8</issue><spage>4649</spage><epage>4659</epage><pages>4649-4659</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Long-time dynamical processes, such as those involving protein unfolding and ligand interactions, can be accelerated and realized through steered molecular dynamics (SMD). The challenge has been the extraction of information from such simulations that generalize for complex nonequilibrium processes. The use of Jarzynski’s equality opened the possibility of determining the free energy along the steered coordinate, but sampling over the nonequilibrium trajectories is slow to converge. Adaptive steered molecular dynamics (ASMD) and other related techniques have been introduced to overcome this challenge through the use of stages. Here, we take advantage of these stages to address the numerical cost that arises from the required use of very large solvent boxes. We introduce telescoping box schemes within adaptive steered molecular dynamics (ASMD) in which we adjust the solvent box between stages and thereby vary (and optimize) the required number of solvent molecules. We have benchmarked the method on a relatively long α-helical peptide, Ala30, with respect to the potential of mean force and hydrogen bonds. We show that the use of telescoping boxes introduces little numerical error while significantly reducing the computational cost.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35830368</pmid><doi>10.1021/acs.jctc.2c00498</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4497-1023</orcidid><orcidid>https://orcid.org/0000-0002-2149-6485</orcidid><orcidid>https://orcid.org/0000-0001-8526-7414</orcidid><orcidid>https://orcid.org/0000-0003-1472-9647</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2022-08, Vol.18 (8), p.4649-4659 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9369075 |
source | ACS Publications; MEDLINE |
subjects | Boxes Computing costs Error reduction Free energy Hydrogen Bonding Hydrogen bonds Ligands Molecular dynamics Molecular Dynamics Simulation Solvents Statistical Mechanics Telescoping Thermodynamics |
title | Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Telescoping%20Boxes%20in%20Adaptive%20Steered%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Zhuang,%20Yi&rft.date=2022-08-09&rft.volume=18&rft.issue=8&rft.spage=4649&rft.epage=4659&rft.pages=4649-4659&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00498&rft_dat=%3Cproquest_pubme%3E2689060976%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700792222&rft_id=info:pmid/35830368&rfr_iscdi=true |