Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification
Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PV...
Gespeichert in:
Veröffentlicht in: | RSC advances 2022-08, Vol.12 (35), p.22410-22415 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22415 |
---|---|
container_issue | 35 |
container_start_page | 22410 |
container_title | RSC advances |
container_volume | 12 |
creator | Li, Mengmeng Cheng, Qin Shen, Cheng Hong, Bin Jiang, Yong Yuxue Wei Cai, Mengdie Chen, Jingshuai Sun, Song |
description | Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification. |
doi_str_mv | 10.1039/d2ra03751c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704033336</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-258a777d78320d059b2d9e5e98f440f3b3397879017d3c60510274402c1e40623</originalsourceid><addsrcrecordid>eNpdT01LAzEUDKJYqb34CwJevKzmYzfZXAQpfkGhHup5yWaz7SvpZs1mC_XXG7CIOpf3mJk3zEPoipJbSri6a1jQhMuCmhN0wUguMkaEOv21T9BsGLYkQRSUCXqOJlxQUiglLxC8gf301lkTAxhcj-BiBh3-YVqwrsG62evOQLfGK1gy3PqAN7DeuAO2bQsGbBdxv_HRGx21O8R0qCHgfgyQZB3Bd5forNVusLPjnKL3p8fV_CVbLJ9f5w-LrOdExowVpZZSNrLkjDSpZc0aZQuryjbPSctrzpUspSJUNtwIUlDCZFKYoTYngvEpuv_O7cd6ZxuTqgXtqj7ATodD5TVUf5UONtXa7yvFRZ7zMgXcHAOC_xjtEKsdDMY6pzvrx6FikuaikJSLZL3-Z936MXTpveQiOeEJgn8BgOJ_7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704033336</pqid></control><display><type>article</type><title>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</title><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Li, Mengmeng ; Cheng, Qin ; Shen, Cheng ; Hong, Bin ; Jiang, Yong ; Yuxue Wei ; Cai, Mengdie ; Chen, Jingshuai ; Sun, Song</creator><creatorcontrib>Li, Mengmeng ; Cheng, Qin ; Shen, Cheng ; Hong, Bin ; Jiang, Yong ; Yuxue Wei ; Cai, Mengdie ; Chen, Jingshuai ; Sun, Song</creatorcontrib><description>Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra03751c</identifier><identifier>PMID: 36105997</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Air purification ; Chemistry ; Current carriers ; Electric fields ; Electron clouds ; Ferroelectric materials ; Ferroelectricity ; Formaldehyde ; Hydroxyl groups ; Hydroxyl radicals ; Mineralization ; Photocatalysis ; Piezoelectricity ; Polarization ; Polyvinylidene fluorides ; Titanium dioxide</subject><ispartof>RSC advances, 2022-08, Vol.12 (35), p.22410-22415</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364438/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364438/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Hong, Bin</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Yuxue Wei</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Chen, Jingshuai</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><title>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</title><title>RSC advances</title><description>Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.</description><subject>Adsorption</subject><subject>Air purification</subject><subject>Chemistry</subject><subject>Current carriers</subject><subject>Electric fields</subject><subject>Electron clouds</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Formaldehyde</subject><subject>Hydroxyl groups</subject><subject>Hydroxyl radicals</subject><subject>Mineralization</subject><subject>Photocatalysis</subject><subject>Piezoelectricity</subject><subject>Polarization</subject><subject>Polyvinylidene fluorides</subject><subject>Titanium dioxide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdT01LAzEUDKJYqb34CwJevKzmYzfZXAQpfkGhHup5yWaz7SvpZs1mC_XXG7CIOpf3mJk3zEPoipJbSri6a1jQhMuCmhN0wUguMkaEOv21T9BsGLYkQRSUCXqOJlxQUiglLxC8gf301lkTAxhcj-BiBh3-YVqwrsG62evOQLfGK1gy3PqAN7DeuAO2bQsGbBdxv_HRGx21O8R0qCHgfgyQZB3Bd5forNVusLPjnKL3p8fV_CVbLJ9f5w-LrOdExowVpZZSNrLkjDSpZc0aZQuryjbPSctrzpUspSJUNtwIUlDCZFKYoTYngvEpuv_O7cd6ZxuTqgXtqj7ATodD5TVUf5UONtXa7yvFRZ7zMgXcHAOC_xjtEKsdDMY6pzvrx6FikuaikJSLZL3-Z936MXTpveQiOeEJgn8BgOJ_7A</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Li, Mengmeng</creator><creator>Cheng, Qin</creator><creator>Shen, Cheng</creator><creator>Hong, Bin</creator><creator>Jiang, Yong</creator><creator>Yuxue Wei</creator><creator>Cai, Mengdie</creator><creator>Chen, Jingshuai</creator><creator>Sun, Song</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220810</creationdate><title>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</title><author>Li, Mengmeng ; Cheng, Qin ; Shen, Cheng ; Hong, Bin ; Jiang, Yong ; Yuxue Wei ; Cai, Mengdie ; Chen, Jingshuai ; Sun, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-258a777d78320d059b2d9e5e98f440f3b3397879017d3c60510274402c1e40623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Air purification</topic><topic>Chemistry</topic><topic>Current carriers</topic><topic>Electric fields</topic><topic>Electron clouds</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Formaldehyde</topic><topic>Hydroxyl groups</topic><topic>Hydroxyl radicals</topic><topic>Mineralization</topic><topic>Photocatalysis</topic><topic>Piezoelectricity</topic><topic>Polarization</topic><topic>Polyvinylidene fluorides</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Hong, Bin</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Yuxue Wei</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Chen, Jingshuai</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengmeng</au><au>Cheng, Qin</au><au>Shen, Cheng</au><au>Hong, Bin</au><au>Jiang, Yong</au><au>Yuxue Wei</au><au>Cai, Mengdie</au><au>Chen, Jingshuai</au><au>Sun, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</atitle><jtitle>RSC advances</jtitle><date>2022-08-10</date><risdate>2022</risdate><volume>12</volume><issue>35</issue><spage>22410</spage><epage>22415</epage><pages>22410-22415</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>36105997</pmid><doi>10.1039/d2ra03751c</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2022-08, Vol.12 (35), p.22410-22415 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364438 |
source | PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access |
subjects | Adsorption Air purification Chemistry Current carriers Electric fields Electron clouds Ferroelectric materials Ferroelectricity Formaldehyde Hydroxyl groups Hydroxyl radicals Mineralization Photocatalysis Piezoelectricity Polarization Polyvinylidene fluorides Titanium dioxide |
title | Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20built-in%20electric%20field%20advancing%20TiO2%20for%20highly%20efficient%20photocatalytic%20air%20purification&rft.jtitle=RSC%20advances&rft.au=Li,%20Mengmeng&rft.date=2022-08-10&rft.volume=12&rft.issue=35&rft.spage=22410&rft.epage=22415&rft.pages=22410-22415&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra03751c&rft_dat=%3Cproquest_pubme%3E2704033336%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704033336&rft_id=info:pmid/36105997&rfr_iscdi=true |