Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification

Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-08, Vol.12 (35), p.22410-22415
Hauptverfasser: Li, Mengmeng, Cheng, Qin, Shen, Cheng, Hong, Bin, Jiang, Yong, Yuxue Wei, Cai, Mengdie, Chen, Jingshuai, Sun, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22415
container_issue 35
container_start_page 22410
container_title RSC advances
container_volume 12
creator Li, Mengmeng
Cheng, Qin
Shen, Cheng
Hong, Bin
Jiang, Yong
Yuxue Wei
Cai, Mengdie
Chen, Jingshuai
Sun, Song
description Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.
doi_str_mv 10.1039/d2ra03751c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704033336</sourcerecordid><originalsourceid>FETCH-LOGICAL-p307t-258a777d78320d059b2d9e5e98f440f3b3397879017d3c60510274402c1e40623</originalsourceid><addsrcrecordid>eNpdT01LAzEUDKJYqb34CwJevKzmYzfZXAQpfkGhHup5yWaz7SvpZs1mC_XXG7CIOpf3mJk3zEPoipJbSri6a1jQhMuCmhN0wUguMkaEOv21T9BsGLYkQRSUCXqOJlxQUiglLxC8gf301lkTAxhcj-BiBh3-YVqwrsG62evOQLfGK1gy3PqAN7DeuAO2bQsGbBdxv_HRGx21O8R0qCHgfgyQZB3Bd5forNVusLPjnKL3p8fV_CVbLJ9f5w-LrOdExowVpZZSNrLkjDSpZc0aZQuryjbPSctrzpUspSJUNtwIUlDCZFKYoTYngvEpuv_O7cd6ZxuTqgXtqj7ATodD5TVUf5UONtXa7yvFRZ7zMgXcHAOC_xjtEKsdDMY6pzvrx6FikuaikJSLZL3-Z936MXTpveQiOeEJgn8BgOJ_7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704033336</pqid></control><display><type>article</type><title>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</title><source>PubMed Central</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Li, Mengmeng ; Cheng, Qin ; Shen, Cheng ; Hong, Bin ; Jiang, Yong ; Yuxue Wei ; Cai, Mengdie ; Chen, Jingshuai ; Sun, Song</creator><creatorcontrib>Li, Mengmeng ; Cheng, Qin ; Shen, Cheng ; Hong, Bin ; Jiang, Yong ; Yuxue Wei ; Cai, Mengdie ; Chen, Jingshuai ; Sun, Song</creatorcontrib><description>Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra03751c</identifier><identifier>PMID: 36105997</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Air purification ; Chemistry ; Current carriers ; Electric fields ; Electron clouds ; Ferroelectric materials ; Ferroelectricity ; Formaldehyde ; Hydroxyl groups ; Hydroxyl radicals ; Mineralization ; Photocatalysis ; Piezoelectricity ; Polarization ; Polyvinylidene fluorides ; Titanium dioxide</subject><ispartof>RSC advances, 2022-08, Vol.12 (35), p.22410-22415</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364438/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9364438/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Hong, Bin</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Yuxue Wei</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Chen, Jingshuai</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><title>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</title><title>RSC advances</title><description>Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.</description><subject>Adsorption</subject><subject>Air purification</subject><subject>Chemistry</subject><subject>Current carriers</subject><subject>Electric fields</subject><subject>Electron clouds</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Formaldehyde</subject><subject>Hydroxyl groups</subject><subject>Hydroxyl radicals</subject><subject>Mineralization</subject><subject>Photocatalysis</subject><subject>Piezoelectricity</subject><subject>Polarization</subject><subject>Polyvinylidene fluorides</subject><subject>Titanium dioxide</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdT01LAzEUDKJYqb34CwJevKzmYzfZXAQpfkGhHup5yWaz7SvpZs1mC_XXG7CIOpf3mJk3zEPoipJbSri6a1jQhMuCmhN0wUguMkaEOv21T9BsGLYkQRSUCXqOJlxQUiglLxC8gf301lkTAxhcj-BiBh3-YVqwrsG62evOQLfGK1gy3PqAN7DeuAO2bQsGbBdxv_HRGx21O8R0qCHgfgyQZB3Bd5forNVusLPjnKL3p8fV_CVbLJ9f5w-LrOdExowVpZZSNrLkjDSpZc0aZQuryjbPSctrzpUspSJUNtwIUlDCZFKYoTYngvEpuv_O7cd6ZxuTqgXtqj7ATodD5TVUf5UONtXa7yvFRZ7zMgXcHAOC_xjtEKsdDMY6pzvrx6FikuaikJSLZL3-Z936MXTpveQiOeEJgn8BgOJ_7A</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Li, Mengmeng</creator><creator>Cheng, Qin</creator><creator>Shen, Cheng</creator><creator>Hong, Bin</creator><creator>Jiang, Yong</creator><creator>Yuxue Wei</creator><creator>Cai, Mengdie</creator><creator>Chen, Jingshuai</creator><creator>Sun, Song</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220810</creationdate><title>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</title><author>Li, Mengmeng ; Cheng, Qin ; Shen, Cheng ; Hong, Bin ; Jiang, Yong ; Yuxue Wei ; Cai, Mengdie ; Chen, Jingshuai ; Sun, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p307t-258a777d78320d059b2d9e5e98f440f3b3397879017d3c60510274402c1e40623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Air purification</topic><topic>Chemistry</topic><topic>Current carriers</topic><topic>Electric fields</topic><topic>Electron clouds</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Formaldehyde</topic><topic>Hydroxyl groups</topic><topic>Hydroxyl radicals</topic><topic>Mineralization</topic><topic>Photocatalysis</topic><topic>Piezoelectricity</topic><topic>Polarization</topic><topic>Polyvinylidene fluorides</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Mengmeng</creatorcontrib><creatorcontrib>Cheng, Qin</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Hong, Bin</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Yuxue Wei</creatorcontrib><creatorcontrib>Cai, Mengdie</creatorcontrib><creatorcontrib>Chen, Jingshuai</creatorcontrib><creatorcontrib>Sun, Song</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Mengmeng</au><au>Cheng, Qin</au><au>Shen, Cheng</au><au>Hong, Bin</au><au>Jiang, Yong</au><au>Yuxue Wei</au><au>Cai, Mengdie</au><au>Chen, Jingshuai</au><au>Sun, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification</atitle><jtitle>RSC advances</jtitle><date>2022-08-10</date><risdate>2022</risdate><volume>12</volume><issue>35</issue><spage>22410</spage><epage>22415</epage><pages>22410-22415</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (−) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>36105997</pmid><doi>10.1039/d2ra03751c</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2022-08, Vol.12 (35), p.22410-22415
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9364438
source PubMed Central; Directory of Open Access Journals; EZB Electronic Journals Library; PubMed Central Open Access
subjects Adsorption
Air purification
Chemistry
Current carriers
Electric fields
Electron clouds
Ferroelectric materials
Ferroelectricity
Formaldehyde
Hydroxyl groups
Hydroxyl radicals
Mineralization
Photocatalysis
Piezoelectricity
Polarization
Polyvinylidene fluorides
Titanium dioxide
title Piezoelectric built-in electric field advancing TiO2 for highly efficient photocatalytic air purification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A17%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piezoelectric%20built-in%20electric%20field%20advancing%20TiO2%20for%20highly%20efficient%20photocatalytic%20air%20purification&rft.jtitle=RSC%20advances&rft.au=Li,%20Mengmeng&rft.date=2022-08-10&rft.volume=12&rft.issue=35&rft.spage=22410&rft.epage=22415&rft.pages=22410-22415&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra03751c&rft_dat=%3Cproquest_pubme%3E2704033336%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704033336&rft_id=info:pmid/36105997&rfr_iscdi=true