An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation
Leishmania donovani causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sa...
Gespeichert in:
Veröffentlicht in: | International microbiology 2023-01, Vol.26 (1), p.25-42 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 42 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | International microbiology |
container_volume | 26 |
creator | Alcolea, Pedro J. Alonso, Ana García-Tabares, Francisco Larraga, Jaime Martins, Luis T. C. Loayza, Franciso J. Ruiz-García, Silvia Larraga, Vicente |
description | Leishmania donovani
causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector’s gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the
L. donovani
promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival–related proteins are ascorbate peroxidase; cystathionine β synthase; an elongation factor 1β paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins—HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1α and E1β subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines. |
doi_str_mv | 10.1007/s10123-022-00259-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9362617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2770723311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-7b343d5b14adecec22d88f39d9fbdf42d0d4d479acdc6c913bd77ff00ded80e3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS0EoqXwAiyQJTZsAmM7ieMNUlVBQboSm-4txz-Jq8S-2E5R3x63ty0XFqxmpPnOmRkdhN4S-EgA-KdMgFDWAKUNAO1E0z5Dp6QnQ0MEdM-P-hP0KudrAML7AV6iE9YJBqSHU7SdB-xD9tNcai0RG--cTTYUrxa8T7FYH7Aat2BU0BaXOcVtmuNW8M76PK8qeIVNDPGmdneCVeXip6rDU4q_yoxVMMeuxcfwGr1wasn2zUM9Q1dfv1xdfGt2Py6_X5zvGt3SrjR8ZC0z3UhaZay2mlIzDI4JI9xoXEsNmNa0XChtdK8FYaPh3DkAY80Alp2hzwfb_Tau1ui6P6lF7pNfVbqVUXn59yT4WU7xRgrW057wavDhwSDFn5vNRa4-a7ssKti4ZUl7ITh09B59_w96HbcU6neScg6cMkZIpeiB0inmnKx7OoaAvAtVHkKVNVR5H6psq-jd8RtPkscUK8AOQK6jMNn0Z_d_bH8DnYuyBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2770723311</pqid></control><display><type>article</type><title>An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Alcolea, Pedro J. ; Alonso, Ana ; García-Tabares, Francisco ; Larraga, Jaime ; Martins, Luis T. C. ; Loayza, Franciso J. ; Ruiz-García, Silvia ; Larraga, Vicente</creator><creatorcontrib>Alcolea, Pedro J. ; Alonso, Ana ; García-Tabares, Francisco ; Larraga, Jaime ; Martins, Luis T. C. ; Loayza, Franciso J. ; Ruiz-García, Silvia ; Larraga, Vicente</creatorcontrib><description>Leishmania donovani
causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector’s gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the
L. donovani
promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival–related proteins are ascorbate peroxidase; cystathionine β synthase; an elongation factor 1β paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins—HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1α and E1β subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines.</description><identifier>ISSN: 1618-1905</identifier><identifier>ISSN: 1139-6709</identifier><identifier>EISSN: 1618-1905</identifier><identifier>DOI: 10.1007/s10123-022-00259-4</identifier><identifier>PMID: 35930160</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>5'-Methylthioadenosine phosphorylase ; Acetyltransferase ; Aldolase ; Animals ; Applied Microbiology ; Ascorbic acid ; Biomedical and Life Sciences ; Cell Differentiation ; Control methods ; Cystathionine b-synthase ; Dehydrogenase ; Dehydrogenases ; Differentiation ; Disease control ; Drug resistance ; Elongation ; Endoplasmic reticulum ; Eukaryotic Microbiology ; GDP-mannose ; GDP-mannose pyrophosphorylase ; Heat shock proteins ; Hsp70 protein ; Immunostimulation ; Internalization ; Isocitrate dehydrogenase ; Kinases ; L-Ascorbate peroxidase ; Leishmania donovani ; Life Sciences ; Mammals ; Mammals - metabolism ; Mannose ; Medical Microbiology ; Microbial Ecology ; Microbiology ; Original ; Original Article ; Parasites ; Parasitic diseases ; Peroxidase ; Phagocytes ; Phosphopyruvate hydratase ; Phosphorylase ; Promastigotes ; Protein kinase C ; Proteome ; Proteomes ; Proteomics ; Protozoan Proteins - analysis ; Reductases ; Side effects ; Superoxide dismutase ; Survival ; Vaccines ; Vector-borne diseases ; Visceral leishmaniasis</subject><ispartof>International microbiology, 2023-01, Vol.26 (1), p.25-42</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>Copyright Spanish Society for Microbiology Jan 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c425t-7b343d5b14adecec22d88f39d9fbdf42d0d4d479acdc6c913bd77ff00ded80e3</cites><orcidid>0000-0002-0729-8941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10123-022-00259-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10123-022-00259-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35930160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alcolea, Pedro J.</creatorcontrib><creatorcontrib>Alonso, Ana</creatorcontrib><creatorcontrib>García-Tabares, Francisco</creatorcontrib><creatorcontrib>Larraga, Jaime</creatorcontrib><creatorcontrib>Martins, Luis T. C.</creatorcontrib><creatorcontrib>Loayza, Franciso J.</creatorcontrib><creatorcontrib>Ruiz-García, Silvia</creatorcontrib><creatorcontrib>Larraga, Vicente</creatorcontrib><title>An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation</title><title>International microbiology</title><addtitle>Int Microbiol</addtitle><addtitle>Int Microbiol</addtitle><description>Leishmania donovani
causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector’s gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the
L. donovani
promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival–related proteins are ascorbate peroxidase; cystathionine β synthase; an elongation factor 1β paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins—HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1α and E1β subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines.</description><subject>5'-Methylthioadenosine phosphorylase</subject><subject>Acetyltransferase</subject><subject>Aldolase</subject><subject>Animals</subject><subject>Applied Microbiology</subject><subject>Ascorbic acid</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Differentiation</subject><subject>Control methods</subject><subject>Cystathionine b-synthase</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Differentiation</subject><subject>Disease control</subject><subject>Drug resistance</subject><subject>Elongation</subject><subject>Endoplasmic reticulum</subject><subject>Eukaryotic Microbiology</subject><subject>GDP-mannose</subject><subject>GDP-mannose pyrophosphorylase</subject><subject>Heat shock proteins</subject><subject>Hsp70 protein</subject><subject>Immunostimulation</subject><subject>Internalization</subject><subject>Isocitrate dehydrogenase</subject><subject>Kinases</subject><subject>L-Ascorbate peroxidase</subject><subject>Leishmania donovani</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>Mammals - metabolism</subject><subject>Mannose</subject><subject>Medical Microbiology</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Original</subject><subject>Original Article</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>Peroxidase</subject><subject>Phagocytes</subject><subject>Phosphopyruvate hydratase</subject><subject>Phosphorylase</subject><subject>Promastigotes</subject><subject>Protein kinase C</subject><subject>Proteome</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Protozoan Proteins - analysis</subject><subject>Reductases</subject><subject>Side effects</subject><subject>Superoxide dismutase</subject><subject>Survival</subject><subject>Vaccines</subject><subject>Vector-borne diseases</subject><subject>Visceral leishmaniasis</subject><issn>1618-1905</issn><issn>1139-6709</issn><issn>1618-1905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhS0EoqXwAiyQJTZsAmM7ieMNUlVBQboSm-4txz-Jq8S-2E5R3x63ty0XFqxmpPnOmRkdhN4S-EgA-KdMgFDWAKUNAO1E0z5Dp6QnQ0MEdM-P-hP0KudrAML7AV6iE9YJBqSHU7SdB-xD9tNcai0RG--cTTYUrxa8T7FYH7Aat2BU0BaXOcVtmuNW8M76PK8qeIVNDPGmdneCVeXip6rDU4q_yoxVMMeuxcfwGr1wasn2zUM9Q1dfv1xdfGt2Py6_X5zvGt3SrjR8ZC0z3UhaZay2mlIzDI4JI9xoXEsNmNa0XChtdK8FYaPh3DkAY80Alp2hzwfb_Tau1ui6P6lF7pNfVbqVUXn59yT4WU7xRgrW057wavDhwSDFn5vNRa4-a7ssKti4ZUl7ITh09B59_w96HbcU6neScg6cMkZIpeiB0inmnKx7OoaAvAtVHkKVNVR5H6psq-jd8RtPkscUK8AOQK6jMNn0Z_d_bH8DnYuyBA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Alcolea, Pedro J.</creator><creator>Alonso, Ana</creator><creator>García-Tabares, Francisco</creator><creator>Larraga, Jaime</creator><creator>Martins, Luis T. C.</creator><creator>Loayza, Franciso J.</creator><creator>Ruiz-García, Silvia</creator><creator>Larraga, Vicente</creator><general>Springer International Publishing</general><general>Spanish Society for Microbiology</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0729-8941</orcidid></search><sort><creationdate>20230101</creationdate><title>An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation</title><author>Alcolea, Pedro J. ; Alonso, Ana ; García-Tabares, Francisco ; Larraga, Jaime ; Martins, Luis T. C. ; Loayza, Franciso J. ; Ruiz-García, Silvia ; Larraga, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-7b343d5b14adecec22d88f39d9fbdf42d0d4d479acdc6c913bd77ff00ded80e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5'-Methylthioadenosine phosphorylase</topic><topic>Acetyltransferase</topic><topic>Aldolase</topic><topic>Animals</topic><topic>Applied Microbiology</topic><topic>Ascorbic acid</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Differentiation</topic><topic>Control methods</topic><topic>Cystathionine b-synthase</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Differentiation</topic><topic>Disease control</topic><topic>Drug resistance</topic><topic>Elongation</topic><topic>Endoplasmic reticulum</topic><topic>Eukaryotic Microbiology</topic><topic>GDP-mannose</topic><topic>GDP-mannose pyrophosphorylase</topic><topic>Heat shock proteins</topic><topic>Hsp70 protein</topic><topic>Immunostimulation</topic><topic>Internalization</topic><topic>Isocitrate dehydrogenase</topic><topic>Kinases</topic><topic>L-Ascorbate peroxidase</topic><topic>Leishmania donovani</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>Mammals - metabolism</topic><topic>Mannose</topic><topic>Medical Microbiology</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Original</topic><topic>Original Article</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>Peroxidase</topic><topic>Phagocytes</topic><topic>Phosphopyruvate hydratase</topic><topic>Phosphorylase</topic><topic>Promastigotes</topic><topic>Protein kinase C</topic><topic>Proteome</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Protozoan Proteins - analysis</topic><topic>Reductases</topic><topic>Side effects</topic><topic>Superoxide dismutase</topic><topic>Survival</topic><topic>Vaccines</topic><topic>Vector-borne diseases</topic><topic>Visceral leishmaniasis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcolea, Pedro J.</creatorcontrib><creatorcontrib>Alonso, Ana</creatorcontrib><creatorcontrib>García-Tabares, Francisco</creatorcontrib><creatorcontrib>Larraga, Jaime</creatorcontrib><creatorcontrib>Martins, Luis T. C.</creatorcontrib><creatorcontrib>Loayza, Franciso J.</creatorcontrib><creatorcontrib>Ruiz-García, Silvia</creatorcontrib><creatorcontrib>Larraga, Vicente</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alcolea, Pedro J.</au><au>Alonso, Ana</au><au>García-Tabares, Francisco</au><au>Larraga, Jaime</au><au>Martins, Luis T. C.</au><au>Loayza, Franciso J.</au><au>Ruiz-García, Silvia</au><au>Larraga, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation</atitle><jtitle>International microbiology</jtitle><stitle>Int Microbiol</stitle><addtitle>Int Microbiol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>26</volume><issue>1</issue><spage>25</spage><epage>42</epage><pages>25-42</pages><issn>1618-1905</issn><issn>1139-6709</issn><eissn>1618-1905</eissn><abstract>Leishmania donovani
causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector’s gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the
L. donovani
promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival–related proteins are ascorbate peroxidase; cystathionine β synthase; an elongation factor 1β paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins—HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1α and E1β subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35930160</pmid><doi>10.1007/s10123-022-00259-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0729-8941</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-1905 |
ispartof | International microbiology, 2023-01, Vol.26 (1), p.25-42 |
issn | 1618-1905 1139-6709 1618-1905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9362617 |
source | MEDLINE; SpringerLink Journals |
subjects | 5'-Methylthioadenosine phosphorylase Acetyltransferase Aldolase Animals Applied Microbiology Ascorbic acid Biomedical and Life Sciences Cell Differentiation Control methods Cystathionine b-synthase Dehydrogenase Dehydrogenases Differentiation Disease control Drug resistance Elongation Endoplasmic reticulum Eukaryotic Microbiology GDP-mannose GDP-mannose pyrophosphorylase Heat shock proteins Hsp70 protein Immunostimulation Internalization Isocitrate dehydrogenase Kinases L-Ascorbate peroxidase Leishmania donovani Life Sciences Mammals Mammals - metabolism Mannose Medical Microbiology Microbial Ecology Microbiology Original Original Article Parasites Parasitic diseases Peroxidase Phagocytes Phosphopyruvate hydratase Phosphorylase Promastigotes Protein kinase C Proteome Proteomes Proteomics Protozoan Proteins - analysis Reductases Side effects Superoxide dismutase Survival Vaccines Vector-borne diseases Visceral leishmaniasis |
title | An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20insight%20into%20differential%20protein%20abundance%20throughout%20Leishmania%20donovani%20promastigote%20growth%20and%20differentiation&rft.jtitle=International%20microbiology&rft.au=Alcolea,%20Pedro%20J.&rft.date=2023-01-01&rft.volume=26&rft.issue=1&rft.spage=25&rft.epage=42&rft.pages=25-42&rft.issn=1618-1905&rft.eissn=1618-1905&rft_id=info:doi/10.1007/s10123-022-00259-4&rft_dat=%3Cproquest_pubme%3E2770723311%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2770723311&rft_id=info:pmid/35930160&rfr_iscdi=true |