Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study

The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligence-based medicine 2022, Vol.6, p.100071-100071, Article 100071
Hauptverfasser: Smit, J.M., Krijthe, J.H., Endeman, H., Tintu, A.N., de Rijke, Y.B., Gommers, D.A.M.P.J., Cremer, O.L., Bosman, R.J., Rigter, S., Wils, E.-J., Frenzel, T., Dongelmans, D.A., De Jong, R., Peters, M.A.A., Kamps, M.J.A., Ramnarain, D., Nowitzky, R., Nooteboom, F.G.C.A., De Ruijter, W., Urlings-Strop, L.C., Smit, E.G.M., Mehagnoul-Schipper, D.J., Dormans, T., De Jager, C.P.C., Hendriks, S.H.A., Achterberg, S., Oostdijk, E., Reidinga, A.C., Festen-Spanjer, B., Brunnekreef, G.B., Cornet, A.D., Van den Tempel, W., Boelens, A.D., Koetsier, P., Lens, J.A., Faber, H.J., karakus, A., Entjes, R., De Jong, P., Rettig, T.C.D., Arbous, M.S., Lalisang, R.C.A., Tonutti, M., De Bruin, D.P., Elbers, P.W.G., Van Bommel, J., Reinders, M.J.T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100071
container_issue
container_start_page 100071
container_title Intelligence-based medicine
container_volume 6
creator Smit, J.M.
Krijthe, J.H.
Endeman, H.
Tintu, A.N.
de Rijke, Y.B.
Gommers, D.A.M.P.J.
Cremer, O.L.
Bosman, R.J.
Rigter, S.
Wils, E.-J.
Frenzel, T.
Dongelmans, D.A.
De Jong, R.
Peters, M.A.A.
Kamps, M.J.A.
Ramnarain, D.
Nowitzky, R.
Nooteboom, F.G.C.A.
De Ruijter, W.
Urlings-Strop, L.C.
Smit, E.G.M.
Mehagnoul-Schipper, D.J.
Dormans, T.
De Jager, C.P.C.
Hendriks, S.H.A.
Achterberg, S.
Oostdijk, E.
Reidinga, A.C.
Festen-Spanjer, B.
Brunnekreef, G.B.
Cornet, A.D.
Van den Tempel, W.
Boelens, A.D.
Koetsier, P.
Lens, J.A.
Faber, H.J.
karakus, A.
Entjes, R.
De Jong, P.
Rettig, T.C.D.
Arbous, M.S.
Lalisang, R.C.A.
Tonutti, M.
De Bruin, D.P.
Elbers, P.W.G.
Van Bommel, J.
Reinders, M.J.T.
description The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU. We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure. The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of −0.04 [−0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of −0.19 [−0.27; −0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research. •We present a dynamic, near-term (≤24 h) mortality model for critically ill COVID-19 patients.•Data was used from the Dutch Data Warehouse, consisting of more than 3000 COVID-19 patients admitted to 25 different ICUs.•Leave-one-ICU-out cross-validation showed good model discrimination (AUROC>0.80) in the majority (21) of the ICUs.•In contrast to static risk stratification scores (eg APACHE), this model offers risk stratification for mortality throughout the whole ICU stay.
doi_str_mv 10.1016/j.ibmed.2022.100071
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666521222000242</els_id><sourcerecordid>2702179761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3741-5af5fe20e4fe793a1f97131d5f73253b7f37888d86b6abd0855273a336ee2543</originalsourceid><addsrcrecordid>eNp9UU1r3DAQFaUlCUl-QaDo2Iu3-rAku9BC2PQjEMgl9Cq08qirxbZcSV7Y_PrK3TSkl5xGzLz3ZvQeQleUrCih8uNu5TcDdCtGGCsdQhR9g86YlLISjLK3L96n6DKlXYEwQTlt6hN0ykUrGqnqM_R4cxjN4C2eInTeZh9GHBweQsym9_mA_YjX9z9vbyra4slkD2NOSzNvoZQMY_J7wNZEwPPo8yd8jSPkGNIERa2MhrnPvrKFBxHbsC3KOOW5O1ygd870CS6f6jl6-Pb1Yf2jurv_fru-vqssVzWthHHCASNQO1AtN9S1qvyjE05xJvhGOa6apukauZFm05FGCKa44VwCMFHzc_TlKDvNi2PLIdH0eop-MPGgg_H6_8not_pX2OuWCylkWwQ-PAnE8HuGlPXgk4W-NyOEOWmmCKOqVZIWKD9CbTEgRXDPayjRS256p__mppfc9DG3wnr_8sJnzr-UCuDzEQDFpr2HqJMtQdiSWCwu6y74Vxf8ATJbq4U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702179761</pqid></control><display><type>article</type><title>Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Smit, J.M. ; Krijthe, J.H. ; Endeman, H. ; Tintu, A.N. ; de Rijke, Y.B. ; Gommers, D.A.M.P.J. ; Cremer, O.L. ; Bosman, R.J. ; Rigter, S. ; Wils, E.-J. ; Frenzel, T. ; Dongelmans, D.A. ; De Jong, R. ; Peters, M.A.A. ; Kamps, M.J.A. ; Ramnarain, D. ; Nowitzky, R. ; Nooteboom, F.G.C.A. ; De Ruijter, W. ; Urlings-Strop, L.C. ; Smit, E.G.M. ; Mehagnoul-Schipper, D.J. ; Dormans, T. ; De Jager, C.P.C. ; Hendriks, S.H.A. ; Achterberg, S. ; Oostdijk, E. ; Reidinga, A.C. ; Festen-Spanjer, B. ; Brunnekreef, G.B. ; Cornet, A.D. ; Van den Tempel, W. ; Boelens, A.D. ; Koetsier, P. ; Lens, J.A. ; Faber, H.J. ; karakus, A. ; Entjes, R. ; De Jong, P. ; Rettig, T.C.D. ; Arbous, M.S. ; Lalisang, R.C.A. ; Tonutti, M. ; De Bruin, D.P. ; Elbers, P.W.G. ; Van Bommel, J. ; Reinders, M.J.T.</creator><creatorcontrib>Smit, J.M. ; Krijthe, J.H. ; Endeman, H. ; Tintu, A.N. ; de Rijke, Y.B. ; Gommers, D.A.M.P.J. ; Cremer, O.L. ; Bosman, R.J. ; Rigter, S. ; Wils, E.-J. ; Frenzel, T. ; Dongelmans, D.A. ; De Jong, R. ; Peters, M.A.A. ; Kamps, M.J.A. ; Ramnarain, D. ; Nowitzky, R. ; Nooteboom, F.G.C.A. ; De Ruijter, W. ; Urlings-Strop, L.C. ; Smit, E.G.M. ; Mehagnoul-Schipper, D.J. ; Dormans, T. ; De Jager, C.P.C. ; Hendriks, S.H.A. ; Achterberg, S. ; Oostdijk, E. ; Reidinga, A.C. ; Festen-Spanjer, B. ; Brunnekreef, G.B. ; Cornet, A.D. ; Van den Tempel, W. ; Boelens, A.D. ; Koetsier, P. ; Lens, J.A. ; Faber, H.J. ; karakus, A. ; Entjes, R. ; De Jong, P. ; Rettig, T.C.D. ; Arbous, M.S. ; Lalisang, R.C.A. ; Tonutti, M. ; De Bruin, D.P. ; Elbers, P.W.G. ; Van Bommel, J. ; Reinders, M.J.T.</creatorcontrib><description>The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU. We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure. The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of −0.04 [−0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of −0.19 [−0.27; −0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research. •We present a dynamic, near-term (≤24 h) mortality model for critically ill COVID-19 patients.•Data was used from the Dutch Data Warehouse, consisting of more than 3000 COVID-19 patients admitted to 25 different ICUs.•Leave-one-ICU-out cross-validation showed good model discrimination (AUROC&gt;0.80) in the majority (21) of the ICUs.•In contrast to static risk stratification scores (eg APACHE), this model offers risk stratification for mortality throughout the whole ICU stay.</description><identifier>ISSN: 2666-5212</identifier><identifier>EISSN: 2666-5212</identifier><identifier>DOI: 10.1016/j.ibmed.2022.100071</identifier><identifier>PMID: 35958674</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><ispartof>Intelligence-based medicine, 2022, Vol.6, p.100071-100071, Article 100071</ispartof><rights>2022 The Authors</rights><rights>2022 The Authors.</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3741-5af5fe20e4fe793a1f97131d5f73253b7f37888d86b6abd0855273a336ee2543</citedby><cites>FETCH-LOGICAL-c3741-5af5fe20e4fe793a1f97131d5f73253b7f37888d86b6abd0855273a336ee2543</cites><orcidid>0000-0003-3435-6358 ; 0000-0001-9487-9578 ; 0000-0002-1718-9079 ; 0000-0002-2011-5169 ; 0000-0003-0179-8934 ; 0000-0002-9917-5251 ; 0000-0001-5195-0485 ; 0000-0002-6169-7839 ; 0000-0003-3716-1863 ; 0000-0003-4264-1108 ; 0000-0002-2868-0920 ; 0000-0001-8408-0500 ; 0000-0001-6808-7702 ; 0000-0002-1148-1562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35958674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smit, J.M.</creatorcontrib><creatorcontrib>Krijthe, J.H.</creatorcontrib><creatorcontrib>Endeman, H.</creatorcontrib><creatorcontrib>Tintu, A.N.</creatorcontrib><creatorcontrib>de Rijke, Y.B.</creatorcontrib><creatorcontrib>Gommers, D.A.M.P.J.</creatorcontrib><creatorcontrib>Cremer, O.L.</creatorcontrib><creatorcontrib>Bosman, R.J.</creatorcontrib><creatorcontrib>Rigter, S.</creatorcontrib><creatorcontrib>Wils, E.-J.</creatorcontrib><creatorcontrib>Frenzel, T.</creatorcontrib><creatorcontrib>Dongelmans, D.A.</creatorcontrib><creatorcontrib>De Jong, R.</creatorcontrib><creatorcontrib>Peters, M.A.A.</creatorcontrib><creatorcontrib>Kamps, M.J.A.</creatorcontrib><creatorcontrib>Ramnarain, D.</creatorcontrib><creatorcontrib>Nowitzky, R.</creatorcontrib><creatorcontrib>Nooteboom, F.G.C.A.</creatorcontrib><creatorcontrib>De Ruijter, W.</creatorcontrib><creatorcontrib>Urlings-Strop, L.C.</creatorcontrib><creatorcontrib>Smit, E.G.M.</creatorcontrib><creatorcontrib>Mehagnoul-Schipper, D.J.</creatorcontrib><creatorcontrib>Dormans, T.</creatorcontrib><creatorcontrib>De Jager, C.P.C.</creatorcontrib><creatorcontrib>Hendriks, S.H.A.</creatorcontrib><creatorcontrib>Achterberg, S.</creatorcontrib><creatorcontrib>Oostdijk, E.</creatorcontrib><creatorcontrib>Reidinga, A.C.</creatorcontrib><creatorcontrib>Festen-Spanjer, B.</creatorcontrib><creatorcontrib>Brunnekreef, G.B.</creatorcontrib><creatorcontrib>Cornet, A.D.</creatorcontrib><creatorcontrib>Van den Tempel, W.</creatorcontrib><creatorcontrib>Boelens, A.D.</creatorcontrib><creatorcontrib>Koetsier, P.</creatorcontrib><creatorcontrib>Lens, J.A.</creatorcontrib><creatorcontrib>Faber, H.J.</creatorcontrib><creatorcontrib>karakus, A.</creatorcontrib><creatorcontrib>Entjes, R.</creatorcontrib><creatorcontrib>De Jong, P.</creatorcontrib><creatorcontrib>Rettig, T.C.D.</creatorcontrib><creatorcontrib>Arbous, M.S.</creatorcontrib><creatorcontrib>Lalisang, R.C.A.</creatorcontrib><creatorcontrib>Tonutti, M.</creatorcontrib><creatorcontrib>De Bruin, D.P.</creatorcontrib><creatorcontrib>Elbers, P.W.G.</creatorcontrib><creatorcontrib>Van Bommel, J.</creatorcontrib><creatorcontrib>Reinders, M.J.T.</creatorcontrib><title>Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study</title><title>Intelligence-based medicine</title><addtitle>Intell Based Med</addtitle><description>The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU. We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure. The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of −0.04 [−0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of −0.19 [−0.27; −0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research. •We present a dynamic, near-term (≤24 h) mortality model for critically ill COVID-19 patients.•Data was used from the Dutch Data Warehouse, consisting of more than 3000 COVID-19 patients admitted to 25 different ICUs.•Leave-one-ICU-out cross-validation showed good model discrimination (AUROC&gt;0.80) in the majority (21) of the ICUs.•In contrast to static risk stratification scores (eg APACHE), this model offers risk stratification for mortality throughout the whole ICU stay.</description><issn>2666-5212</issn><issn>2666-5212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQFaUlCUl-QaDo2Iu3-rAku9BC2PQjEMgl9Cq08qirxbZcSV7Y_PrK3TSkl5xGzLz3ZvQeQleUrCih8uNu5TcDdCtGGCsdQhR9g86YlLISjLK3L96n6DKlXYEwQTlt6hN0ykUrGqnqM_R4cxjN4C2eInTeZh9GHBweQsym9_mA_YjX9z9vbyra4slkD2NOSzNvoZQMY_J7wNZEwPPo8yd8jSPkGNIERa2MhrnPvrKFBxHbsC3KOOW5O1ygd870CS6f6jl6-Pb1Yf2jurv_fru-vqssVzWthHHCASNQO1AtN9S1qvyjE05xJvhGOa6apukauZFm05FGCKa44VwCMFHzc_TlKDvNi2PLIdH0eop-MPGgg_H6_8not_pX2OuWCylkWwQ-PAnE8HuGlPXgk4W-NyOEOWmmCKOqVZIWKD9CbTEgRXDPayjRS256p__mppfc9DG3wnr_8sJnzr-UCuDzEQDFpr2HqJMtQdiSWCwu6y74Vxf8ATJbq4U</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Smit, J.M.</creator><creator>Krijthe, J.H.</creator><creator>Endeman, H.</creator><creator>Tintu, A.N.</creator><creator>de Rijke, Y.B.</creator><creator>Gommers, D.A.M.P.J.</creator><creator>Cremer, O.L.</creator><creator>Bosman, R.J.</creator><creator>Rigter, S.</creator><creator>Wils, E.-J.</creator><creator>Frenzel, T.</creator><creator>Dongelmans, D.A.</creator><creator>De Jong, R.</creator><creator>Peters, M.A.A.</creator><creator>Kamps, M.J.A.</creator><creator>Ramnarain, D.</creator><creator>Nowitzky, R.</creator><creator>Nooteboom, F.G.C.A.</creator><creator>De Ruijter, W.</creator><creator>Urlings-Strop, L.C.</creator><creator>Smit, E.G.M.</creator><creator>Mehagnoul-Schipper, D.J.</creator><creator>Dormans, T.</creator><creator>De Jager, C.P.C.</creator><creator>Hendriks, S.H.A.</creator><creator>Achterberg, S.</creator><creator>Oostdijk, E.</creator><creator>Reidinga, A.C.</creator><creator>Festen-Spanjer, B.</creator><creator>Brunnekreef, G.B.</creator><creator>Cornet, A.D.</creator><creator>Van den Tempel, W.</creator><creator>Boelens, A.D.</creator><creator>Koetsier, P.</creator><creator>Lens, J.A.</creator><creator>Faber, H.J.</creator><creator>karakus, A.</creator><creator>Entjes, R.</creator><creator>De Jong, P.</creator><creator>Rettig, T.C.D.</creator><creator>Arbous, M.S.</creator><creator>Lalisang, R.C.A.</creator><creator>Tonutti, M.</creator><creator>De Bruin, D.P.</creator><creator>Elbers, P.W.G.</creator><creator>Van Bommel, J.</creator><creator>Reinders, M.J.T.</creator><general>Elsevier B.V</general><general>The Authors. Published by Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3435-6358</orcidid><orcidid>https://orcid.org/0000-0001-9487-9578</orcidid><orcidid>https://orcid.org/0000-0002-1718-9079</orcidid><orcidid>https://orcid.org/0000-0002-2011-5169</orcidid><orcidid>https://orcid.org/0000-0003-0179-8934</orcidid><orcidid>https://orcid.org/0000-0002-9917-5251</orcidid><orcidid>https://orcid.org/0000-0001-5195-0485</orcidid><orcidid>https://orcid.org/0000-0002-6169-7839</orcidid><orcidid>https://orcid.org/0000-0003-3716-1863</orcidid><orcidid>https://orcid.org/0000-0003-4264-1108</orcidid><orcidid>https://orcid.org/0000-0002-2868-0920</orcidid><orcidid>https://orcid.org/0000-0001-8408-0500</orcidid><orcidid>https://orcid.org/0000-0001-6808-7702</orcidid><orcidid>https://orcid.org/0000-0002-1148-1562</orcidid></search><sort><creationdate>2022</creationdate><title>Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study</title><author>Smit, J.M. ; Krijthe, J.H. ; Endeman, H. ; Tintu, A.N. ; de Rijke, Y.B. ; Gommers, D.A.M.P.J. ; Cremer, O.L. ; Bosman, R.J. ; Rigter, S. ; Wils, E.-J. ; Frenzel, T. ; Dongelmans, D.A. ; De Jong, R. ; Peters, M.A.A. ; Kamps, M.J.A. ; Ramnarain, D. ; Nowitzky, R. ; Nooteboom, F.G.C.A. ; De Ruijter, W. ; Urlings-Strop, L.C. ; Smit, E.G.M. ; Mehagnoul-Schipper, D.J. ; Dormans, T. ; De Jager, C.P.C. ; Hendriks, S.H.A. ; Achterberg, S. ; Oostdijk, E. ; Reidinga, A.C. ; Festen-Spanjer, B. ; Brunnekreef, G.B. ; Cornet, A.D. ; Van den Tempel, W. ; Boelens, A.D. ; Koetsier, P. ; Lens, J.A. ; Faber, H.J. ; karakus, A. ; Entjes, R. ; De Jong, P. ; Rettig, T.C.D. ; Arbous, M.S. ; Lalisang, R.C.A. ; Tonutti, M. ; De Bruin, D.P. ; Elbers, P.W.G. ; Van Bommel, J. ; Reinders, M.J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3741-5af5fe20e4fe793a1f97131d5f73253b7f37888d86b6abd0855273a336ee2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smit, J.M.</creatorcontrib><creatorcontrib>Krijthe, J.H.</creatorcontrib><creatorcontrib>Endeman, H.</creatorcontrib><creatorcontrib>Tintu, A.N.</creatorcontrib><creatorcontrib>de Rijke, Y.B.</creatorcontrib><creatorcontrib>Gommers, D.A.M.P.J.</creatorcontrib><creatorcontrib>Cremer, O.L.</creatorcontrib><creatorcontrib>Bosman, R.J.</creatorcontrib><creatorcontrib>Rigter, S.</creatorcontrib><creatorcontrib>Wils, E.-J.</creatorcontrib><creatorcontrib>Frenzel, T.</creatorcontrib><creatorcontrib>Dongelmans, D.A.</creatorcontrib><creatorcontrib>De Jong, R.</creatorcontrib><creatorcontrib>Peters, M.A.A.</creatorcontrib><creatorcontrib>Kamps, M.J.A.</creatorcontrib><creatorcontrib>Ramnarain, D.</creatorcontrib><creatorcontrib>Nowitzky, R.</creatorcontrib><creatorcontrib>Nooteboom, F.G.C.A.</creatorcontrib><creatorcontrib>De Ruijter, W.</creatorcontrib><creatorcontrib>Urlings-Strop, L.C.</creatorcontrib><creatorcontrib>Smit, E.G.M.</creatorcontrib><creatorcontrib>Mehagnoul-Schipper, D.J.</creatorcontrib><creatorcontrib>Dormans, T.</creatorcontrib><creatorcontrib>De Jager, C.P.C.</creatorcontrib><creatorcontrib>Hendriks, S.H.A.</creatorcontrib><creatorcontrib>Achterberg, S.</creatorcontrib><creatorcontrib>Oostdijk, E.</creatorcontrib><creatorcontrib>Reidinga, A.C.</creatorcontrib><creatorcontrib>Festen-Spanjer, B.</creatorcontrib><creatorcontrib>Brunnekreef, G.B.</creatorcontrib><creatorcontrib>Cornet, A.D.</creatorcontrib><creatorcontrib>Van den Tempel, W.</creatorcontrib><creatorcontrib>Boelens, A.D.</creatorcontrib><creatorcontrib>Koetsier, P.</creatorcontrib><creatorcontrib>Lens, J.A.</creatorcontrib><creatorcontrib>Faber, H.J.</creatorcontrib><creatorcontrib>karakus, A.</creatorcontrib><creatorcontrib>Entjes, R.</creatorcontrib><creatorcontrib>De Jong, P.</creatorcontrib><creatorcontrib>Rettig, T.C.D.</creatorcontrib><creatorcontrib>Arbous, M.S.</creatorcontrib><creatorcontrib>Lalisang, R.C.A.</creatorcontrib><creatorcontrib>Tonutti, M.</creatorcontrib><creatorcontrib>De Bruin, D.P.</creatorcontrib><creatorcontrib>Elbers, P.W.G.</creatorcontrib><creatorcontrib>Van Bommel, J.</creatorcontrib><creatorcontrib>Reinders, M.J.T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Intelligence-based medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smit, J.M.</au><au>Krijthe, J.H.</au><au>Endeman, H.</au><au>Tintu, A.N.</au><au>de Rijke, Y.B.</au><au>Gommers, D.A.M.P.J.</au><au>Cremer, O.L.</au><au>Bosman, R.J.</au><au>Rigter, S.</au><au>Wils, E.-J.</au><au>Frenzel, T.</au><au>Dongelmans, D.A.</au><au>De Jong, R.</au><au>Peters, M.A.A.</au><au>Kamps, M.J.A.</au><au>Ramnarain, D.</au><au>Nowitzky, R.</au><au>Nooteboom, F.G.C.A.</au><au>De Ruijter, W.</au><au>Urlings-Strop, L.C.</au><au>Smit, E.G.M.</au><au>Mehagnoul-Schipper, D.J.</au><au>Dormans, T.</au><au>De Jager, C.P.C.</au><au>Hendriks, S.H.A.</au><au>Achterberg, S.</au><au>Oostdijk, E.</au><au>Reidinga, A.C.</au><au>Festen-Spanjer, B.</au><au>Brunnekreef, G.B.</au><au>Cornet, A.D.</au><au>Van den Tempel, W.</au><au>Boelens, A.D.</au><au>Koetsier, P.</au><au>Lens, J.A.</au><au>Faber, H.J.</au><au>karakus, A.</au><au>Entjes, R.</au><au>De Jong, P.</au><au>Rettig, T.C.D.</au><au>Arbous, M.S.</au><au>Lalisang, R.C.A.</au><au>Tonutti, M.</au><au>De Bruin, D.P.</au><au>Elbers, P.W.G.</au><au>Van Bommel, J.</au><au>Reinders, M.J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study</atitle><jtitle>Intelligence-based medicine</jtitle><addtitle>Intell Based Med</addtitle><date>2022</date><risdate>2022</risdate><volume>6</volume><spage>100071</spage><epage>100071</epage><pages>100071-100071</pages><artnum>100071</artnum><issn>2666-5212</issn><eissn>2666-5212</eissn><abstract>The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU. We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure. The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of −0.04 [−0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of −0.19 [−0.27; −0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research. •We present a dynamic, near-term (≤24 h) mortality model for critically ill COVID-19 patients.•Data was used from the Dutch Data Warehouse, consisting of more than 3000 COVID-19 patients admitted to 25 different ICUs.•Leave-one-ICU-out cross-validation showed good model discrimination (AUROC&gt;0.80) in the majority (21) of the ICUs.•In contrast to static risk stratification scores (eg APACHE), this model offers risk stratification for mortality throughout the whole ICU stay.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35958674</pmid><doi>10.1016/j.ibmed.2022.100071</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3435-6358</orcidid><orcidid>https://orcid.org/0000-0001-9487-9578</orcidid><orcidid>https://orcid.org/0000-0002-1718-9079</orcidid><orcidid>https://orcid.org/0000-0002-2011-5169</orcidid><orcidid>https://orcid.org/0000-0003-0179-8934</orcidid><orcidid>https://orcid.org/0000-0002-9917-5251</orcidid><orcidid>https://orcid.org/0000-0001-5195-0485</orcidid><orcidid>https://orcid.org/0000-0002-6169-7839</orcidid><orcidid>https://orcid.org/0000-0003-3716-1863</orcidid><orcidid>https://orcid.org/0000-0003-4264-1108</orcidid><orcidid>https://orcid.org/0000-0002-2868-0920</orcidid><orcidid>https://orcid.org/0000-0001-8408-0500</orcidid><orcidid>https://orcid.org/0000-0001-6808-7702</orcidid><orcidid>https://orcid.org/0000-0002-1148-1562</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-5212
ispartof Intelligence-based medicine, 2022, Vol.6, p.100071-100071, Article 100071
issn 2666-5212
2666-5212
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356569
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20prediction%20of%20mortality%20in%20COVID-19%20patients%20in%20the%20intensive%20care%20unit:%20A%20retrospective%20multi-center%20cohort%20study&rft.jtitle=Intelligence-based%20medicine&rft.au=Smit,%20J.M.&rft.date=2022&rft.volume=6&rft.spage=100071&rft.epage=100071&rft.pages=100071-100071&rft.artnum=100071&rft.issn=2666-5212&rft.eissn=2666-5212&rft_id=info:doi/10.1016/j.ibmed.2022.100071&rft_dat=%3Cproquest_pubme%3E2702179761%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2702179761&rft_id=info:pmid/35958674&rft_els_id=S2666521222000242&rfr_iscdi=true