Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission

A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2022-08, Vol.9 (22), p.e2201523-n/a
Hauptverfasser: Huo, Man, Dai, Xian‐Yin, Liu, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page e2201523
container_title Advanced science
container_volume 9
creator Huo, Man
Dai, Xian‐Yin
Liu, Yu
description A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling. A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5  or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling.
doi_str_mv 10.1002/advs.202201523
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9353443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672706794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSMEolXpliWyxIbNDM6zY8cbpFEptFIFSKFsLcfzMnFJ4qmdTDU7PqHf2C_BoymjwoaVLb_jq3d0s-x1Tuc5pfDeLDdxDhSA5gWwZ9kx5KqcsZLz50_uR9lpjDeUJohJnpcvsyNWiAKgKI-z2-tuDKYzYYWkGv1PjKRqXTOSb62P69YHjBYHi2QRRtc460xHLkzYYBzdsCLVtA6m9x3aKWWQahtH7MmdG1vyBU14-HV_OTTBBFyS897F6PzwKnvRmC7i6eN5kl1_Ov9-djG7-vr58mxxNbNMMZiBRA4C60LWpaprahsQy1ywAnkaWwST3hta8BxkoepcCSaFVTUorBlCzU6yD_vc9VT3uEwWO1G9Dq43Yau9cfrvyeBavfIbrVjBOGcp4N1jQPC3UxLWycBi15kB_RQ1CAmSCql4Qt_-g974KQxJL1Gq5IJxKRI131M2-BgDNodlcqp3hepdofpQaPrw5qnCAf9TXwL4HrhzHW7_E6cXH39UrJTAfgMg5K8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698463476</pqid></control><display><type>article</type><title>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><creator>Huo, Man ; Dai, Xian‐Yin ; Liu, Yu</creator><creatorcontrib>Huo, Man ; Dai, Xian‐Yin ; Liu, Yu</creatorcontrib><description>A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling. A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5  or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202201523</identifier><identifier>PMID: 35652258</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Aqueous solutions ; Dyes ; Energy ; near‐infrared cell labeling ; near‐infrared delayed emission ; phosphorescence ; phosphorescence artificial harvesting ; two‐step sequential energy transfer</subject><ispartof>Advanced science, 2022-08, Vol.9 (22), p.e2201523-n/a</ispartof><rights>2022 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</citedby><cites>FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</cites><orcidid>0000-0001-8723-1896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353443/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353443/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,1414,11549,27911,27912,45561,45562,46039,46463,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35652258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huo, Man</creatorcontrib><creatorcontrib>Dai, Xian‐Yin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><title>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling. A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5  or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling.</description><subject>Aqueous solutions</subject><subject>Dyes</subject><subject>Energy</subject><subject>near‐infrared cell labeling</subject><subject>near‐infrared delayed emission</subject><subject>phosphorescence</subject><subject>phosphorescence artificial harvesting</subject><subject>two‐step sequential energy transfer</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAURSMEolXpliWyxIbNDM6zY8cbpFEptFIFSKFsLcfzMnFJ4qmdTDU7PqHf2C_BoymjwoaVLb_jq3d0s-x1Tuc5pfDeLDdxDhSA5gWwZ9kx5KqcsZLz50_uR9lpjDeUJohJnpcvsyNWiAKgKI-z2-tuDKYzYYWkGv1PjKRqXTOSb62P69YHjBYHi2QRRtc460xHLkzYYBzdsCLVtA6m9x3aKWWQahtH7MmdG1vyBU14-HV_OTTBBFyS897F6PzwKnvRmC7i6eN5kl1_Ov9-djG7-vr58mxxNbNMMZiBRA4C60LWpaprahsQy1ywAnkaWwST3hta8BxkoepcCSaFVTUorBlCzU6yD_vc9VT3uEwWO1G9Dq43Yau9cfrvyeBavfIbrVjBOGcp4N1jQPC3UxLWycBi15kB_RQ1CAmSCql4Qt_-g974KQxJL1Gq5IJxKRI131M2-BgDNodlcqp3hepdofpQaPrw5qnCAf9TXwL4HrhzHW7_E6cXH39UrJTAfgMg5K8s</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huo, Man</creator><creator>Dai, Xian‐Yin</creator><creator>Liu, Yu</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8723-1896</orcidid></search><sort><creationdate>20220801</creationdate><title>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</title><author>Huo, Man ; Dai, Xian‐Yin ; Liu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>Dyes</topic><topic>Energy</topic><topic>near‐infrared cell labeling</topic><topic>near‐infrared delayed emission</topic><topic>phosphorescence</topic><topic>phosphorescence artificial harvesting</topic><topic>two‐step sequential energy transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Man</creatorcontrib><creatorcontrib>Dai, Xian‐Yin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Man</au><au>Dai, Xian‐Yin</au><au>Liu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>9</volume><issue>22</issue><spage>e2201523</spage><epage>n/a</epage><pages>e2201523-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling. A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5  or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35652258</pmid><doi>10.1002/advs.202201523</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8723-1896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2022-08, Vol.9 (22), p.e2201523-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9353443
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; PubMed Central
subjects Aqueous solutions
Dyes
Energy
near‐infrared cell labeling
near‐infrared delayed emission
phosphorescence
phosphorescence artificial harvesting
two‐step sequential energy transfer
title Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralarge%20Stokes%20Shift%20Phosphorescence%20Artificial%20Harvesting%20Supramolecular%20System%20with%20Near%E2%80%90Infrared%20Emission&rft.jtitle=Advanced%20science&rft.au=Huo,%20Man&rft.date=2022-08-01&rft.volume=9&rft.issue=22&rft.spage=e2201523&rft.epage=n/a&rft.pages=e2201523-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202201523&rft_dat=%3Cproquest_pubme%3E2672706794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698463476&rft_id=info:pmid/35652258&rfr_iscdi=true