Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission
A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via c...
Gespeichert in:
Veröffentlicht in: | Advanced science 2022-08, Vol.9 (22), p.e2201523-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 22 |
container_start_page | e2201523 |
container_title | Advanced science |
container_volume | 9 |
creator | Huo, Man Dai, Xian‐Yin Liu, Yu |
description | A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling.
A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5 or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling. |
doi_str_mv | 10.1002/advs.202201523 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9353443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672706794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSMEolXpliWyxIbNDM6zY8cbpFEptFIFSKFsLcfzMnFJ4qmdTDU7PqHf2C_BoymjwoaVLb_jq3d0s-x1Tuc5pfDeLDdxDhSA5gWwZ9kx5KqcsZLz50_uR9lpjDeUJohJnpcvsyNWiAKgKI-z2-tuDKYzYYWkGv1PjKRqXTOSb62P69YHjBYHi2QRRtc460xHLkzYYBzdsCLVtA6m9x3aKWWQahtH7MmdG1vyBU14-HV_OTTBBFyS897F6PzwKnvRmC7i6eN5kl1_Ov9-djG7-vr58mxxNbNMMZiBRA4C60LWpaprahsQy1ywAnkaWwST3hta8BxkoepcCSaFVTUorBlCzU6yD_vc9VT3uEwWO1G9Dq43Yau9cfrvyeBavfIbrVjBOGcp4N1jQPC3UxLWycBi15kB_RQ1CAmSCql4Qt_-g974KQxJL1Gq5IJxKRI131M2-BgDNodlcqp3hepdofpQaPrw5qnCAf9TXwL4HrhzHW7_E6cXH39UrJTAfgMg5K8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698463476</pqid></control><display><type>article</type><title>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><creator>Huo, Man ; Dai, Xian‐Yin ; Liu, Yu</creator><creatorcontrib>Huo, Man ; Dai, Xian‐Yin ; Liu, Yu</creatorcontrib><description>A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling.
A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5 or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.202201523</identifier><identifier>PMID: 35652258</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Aqueous solutions ; Dyes ; Energy ; near‐infrared cell labeling ; near‐infrared delayed emission ; phosphorescence ; phosphorescence artificial harvesting ; two‐step sequential energy transfer</subject><ispartof>Advanced science, 2022-08, Vol.9 (22), p.e2201523-n/a</ispartof><rights>2022 The Authors. Advanced Science published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Science published by Wiley-VCH GmbH.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</citedby><cites>FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</cites><orcidid>0000-0001-8723-1896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353443/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353443/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,1414,11549,27911,27912,45561,45562,46039,46463,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35652258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huo, Man</creatorcontrib><creatorcontrib>Dai, Xian‐Yin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><title>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling.
A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5 or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling.</description><subject>Aqueous solutions</subject><subject>Dyes</subject><subject>Energy</subject><subject>near‐infrared cell labeling</subject><subject>near‐infrared delayed emission</subject><subject>phosphorescence</subject><subject>phosphorescence artificial harvesting</subject><subject>two‐step sequential energy transfer</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAURSMEolXpliWyxIbNDM6zY8cbpFEptFIFSKFsLcfzMnFJ4qmdTDU7PqHf2C_BoymjwoaVLb_jq3d0s-x1Tuc5pfDeLDdxDhSA5gWwZ9kx5KqcsZLz50_uR9lpjDeUJohJnpcvsyNWiAKgKI-z2-tuDKYzYYWkGv1PjKRqXTOSb62P69YHjBYHi2QRRtc460xHLkzYYBzdsCLVtA6m9x3aKWWQahtH7MmdG1vyBU14-HV_OTTBBFyS897F6PzwKnvRmC7i6eN5kl1_Ov9-djG7-vr58mxxNbNMMZiBRA4C60LWpaprahsQy1ywAnkaWwST3hta8BxkoepcCSaFVTUorBlCzU6yD_vc9VT3uEwWO1G9Dq43Yau9cfrvyeBavfIbrVjBOGcp4N1jQPC3UxLWycBi15kB_RQ1CAmSCql4Qt_-g974KQxJL1Gq5IJxKRI131M2-BgDNodlcqp3hepdofpQaPrw5qnCAf9TXwL4HrhzHW7_E6cXH39UrJTAfgMg5K8s</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huo, Man</creator><creator>Dai, Xian‐Yin</creator><creator>Liu, Yu</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8723-1896</orcidid></search><sort><creationdate>20220801</creationdate><title>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</title><author>Huo, Man ; Dai, Xian‐Yin ; Liu, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3932-27e426eb57b89bb0cf26d1635e4932ce2ab89f05412759b196376c9b29eb3e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous solutions</topic><topic>Dyes</topic><topic>Energy</topic><topic>near‐infrared cell labeling</topic><topic>near‐infrared delayed emission</topic><topic>phosphorescence</topic><topic>phosphorescence artificial harvesting</topic><topic>two‐step sequential energy transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Man</creatorcontrib><creatorcontrib>Dai, Xian‐Yin</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Man</au><au>Dai, Xian‐Yin</au><au>Liu, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>9</volume><issue>22</issue><spage>e2201523</spage><epage>n/a</epage><pages>e2201523-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>A two‐step sequential phosphorescence harvesting system with ultralarge Stokes shift and near‐infrared (NIR) emission at 825 nm is successfully constructed by racemic 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline (BQ), cucurbit[8]uril (CB[8]), and amphipathic sulfonatocalix[4]arene (SC4AD) via cascaded assembly strategy in aqueous solution. In virtue of the confinement effect of CB[8] with rigid cavity, BQ can generate an emerging phosphorescent emission at 555 nm. Subsequently, the binary BQ⊂CB[8] further assemblies with SC4AD to form close‐packed spherical aggregate, which contributes to the dramatic enhancement of phosphorescence emission intensity ≈30 times with prolonged lifetime from 21.3 µs to 0.364 ms. Notably, the BQ⊂CB[8]@SC4AD assembly can serve as an energy donor to conduct stepwise phosphorescence harvesting process through successive introduction of primary acceptors, cyanine 5 (Cy5) or nile blue (NiB), and secondary acceptor, heptamethine cyanine (IR780). The final aggregate with remarkable ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence (PL) emission at 825 nm is further employed as imaging agent for NIR cell labeling.
A stepwise phosphorescence artificial harvesting supramolecular system is constructed using 1,2‐diaminocyclohexan‐derived 6‐bromoisoquinoline, cucurbit[8]uril, and amphipathic sulfonatocalix[4]arene in aqueous solution through successively introducing primary acceptors (Cy5 or NiB) and final acceptor (IR780), presenting ultralarge Stokes shift (≈525 nm) and long‐lived NIR photoluminescence emission at 825 nm, thus being successfully applied for NIR cell labeling.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>35652258</pmid><doi>10.1002/advs.202201523</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8723-1896</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2198-3844 |
ispartof | Advanced science, 2022-08, Vol.9 (22), p.e2201523-n/a |
issn | 2198-3844 2198-3844 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9353443 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; PubMed Central |
subjects | Aqueous solutions Dyes Energy near‐infrared cell labeling near‐infrared delayed emission phosphorescence phosphorescence artificial harvesting two‐step sequential energy transfer |
title | Ultralarge Stokes Shift Phosphorescence Artificial Harvesting Supramolecular System with Near‐Infrared Emission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A51%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralarge%20Stokes%20Shift%20Phosphorescence%20Artificial%20Harvesting%20Supramolecular%20System%20with%20Near%E2%80%90Infrared%20Emission&rft.jtitle=Advanced%20science&rft.au=Huo,%20Man&rft.date=2022-08-01&rft.volume=9&rft.issue=22&rft.spage=e2201523&rft.epage=n/a&rft.pages=e2201523-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.202201523&rft_dat=%3Cproquest_pubme%3E2672706794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698463476&rft_id=info:pmid/35652258&rfr_iscdi=true |