Molecular simulations of the interfacial properties in silk-hydroxyapatite composites

Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2022-08, Vol.14 (3), p.1929-1939
Hauptverfasser: López Barreiro, Diego, Martín-Moldes, Zaira, Blanco Fernández, Adrián, Fitzpatrick, Vincent, Kaplan, David L, Buehler, Markus J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1939
container_issue 3
container_start_page 1929
container_title Nanoscale
container_volume 14
creator López Barreiro, Diego
Martín-Moldes, Zaira
Blanco Fernández, Adrián
Fitzpatrick, Vincent
Kaplan, David L
Buehler, Markus J
description Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo . Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration. This combined computational-experimental work describes with atomistic resolution the interfacial interaction between the silk and hydroxyapatite and the potential implications for the development of osteoinductive silk biomaterials.
doi_str_mv 10.1039/d2nr01989b
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9351605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691788778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-750d7cc2e612e85e3384f4eddabce1364d40f156025a83754a183259b8bb7aa63</originalsourceid><addsrcrecordid>eNpdkUtr3TAQhUVIyKvZZF8wZBMCbvSWvAk0N48W0hZKsxayPO5VYluuZIfef1-lN9yQrGaY-eZwhoPQMcGfCGbVeUOHiEmlq3oL7VPMccmYotubXvI9dJDSA8ayYpLtoj0mtKAa4310_y104ObOxiL5PtfJhyEVoS2mJRR-mCC21nnbFWMMI8TJQ8rjDHeP5XLVxPB3Zcd8NUHhQj-GlLv0Ae20tktw9FIP0f3N9a_Fl_Lux-3Xxee70nEup1IJ3CjnKEhCQQtgTPOWQ9PY2gHJvhuOWyIkpsJqpgS3RDMqqlrXtbJWskN0sdYd57qHxsEwRduZMfrexpUJ1pu3m8Evze_wZComiMQiC5y-CMTwZ4Y0md4nB11nBwhzMlRWRGmtlM7oyTv0IcxxyO89U0rhilOVqbM15WJIKUK7MUOweU7LXNHvP_-ndZnhj2s4JrfhXtNk_wD8KpHf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697709427</pqid></control><display><type>article</type><title>Molecular simulations of the interfacial properties in silk-hydroxyapatite composites</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>López Barreiro, Diego ; Martín-Moldes, Zaira ; Blanco Fernández, Adrián ; Fitzpatrick, Vincent ; Kaplan, David L ; Buehler, Markus J</creator><creatorcontrib>López Barreiro, Diego ; Martín-Moldes, Zaira ; Blanco Fernández, Adrián ; Fitzpatrick, Vincent ; Kaplan, David L ; Buehler, Markus J</creatorcontrib><description>Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo . Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration. This combined computational-experimental work describes with atomistic resolution the interfacial interaction between the silk and hydroxyapatite and the potential implications for the development of osteoinductive silk biomaterials.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr01989b</identifier><identifier>PMID: 35852800</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Annealing ; Biocompatibility ; Biological materials ; Biomedical materials ; Chemistry ; Composite materials ; Dynamic structural analysis ; Hydroxyapatite ; Interfacial properties ; Load bearing elements ; Mechanical properties ; Molecular dynamics ; Nacre ; Regeneration (physiology) ; Robotics ; Sheets ; Silk ; Water vapor</subject><ispartof>Nanoscale, 2022-08, Vol.14 (3), p.1929-1939</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-750d7cc2e612e85e3384f4eddabce1364d40f156025a83754a183259b8bb7aa63</citedby><cites>FETCH-LOGICAL-c446t-750d7cc2e612e85e3384f4eddabce1364d40f156025a83754a183259b8bb7aa63</cites><orcidid>0000-0002-2932-8064 ; 0000-0002-9245-7774 ; 0000-0002-9346-655X ; 0000-0002-9434-9494 ; 0000-0002-0556-1179 ; 0000-0002-4173-9659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>López Barreiro, Diego</creatorcontrib><creatorcontrib>Martín-Moldes, Zaira</creatorcontrib><creatorcontrib>Blanco Fernández, Adrián</creatorcontrib><creatorcontrib>Fitzpatrick, Vincent</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><title>Molecular simulations of the interfacial properties in silk-hydroxyapatite composites</title><title>Nanoscale</title><description>Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo . Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration. This combined computational-experimental work describes with atomistic resolution the interfacial interaction between the silk and hydroxyapatite and the potential implications for the development of osteoinductive silk biomaterials.</description><subject>Annealing</subject><subject>Biocompatibility</subject><subject>Biological materials</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Composite materials</subject><subject>Dynamic structural analysis</subject><subject>Hydroxyapatite</subject><subject>Interfacial properties</subject><subject>Load bearing elements</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nacre</subject><subject>Regeneration (physiology)</subject><subject>Robotics</subject><subject>Sheets</subject><subject>Silk</subject><subject>Water vapor</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkUtr3TAQhUVIyKvZZF8wZBMCbvSWvAk0N48W0hZKsxayPO5VYluuZIfef1-lN9yQrGaY-eZwhoPQMcGfCGbVeUOHiEmlq3oL7VPMccmYotubXvI9dJDSA8ayYpLtoj0mtKAa4310_y104ObOxiL5PtfJhyEVoS2mJRR-mCC21nnbFWMMI8TJQ8rjDHeP5XLVxPB3Zcd8NUHhQj-GlLv0Ae20tktw9FIP0f3N9a_Fl_Lux-3Xxee70nEup1IJ3CjnKEhCQQtgTPOWQ9PY2gHJvhuOWyIkpsJqpgS3RDMqqlrXtbJWskN0sdYd57qHxsEwRduZMfrexpUJ1pu3m8Evze_wZComiMQiC5y-CMTwZ4Y0md4nB11nBwhzMlRWRGmtlM7oyTv0IcxxyO89U0rhilOVqbM15WJIKUK7MUOweU7LXNHvP_-ndZnhj2s4JrfhXtNk_wD8KpHf</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>López Barreiro, Diego</creator><creator>Martín-Moldes, Zaira</creator><creator>Blanco Fernández, Adrián</creator><creator>Fitzpatrick, Vincent</creator><creator>Kaplan, David L</creator><creator>Buehler, Markus J</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2932-8064</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-9346-655X</orcidid><orcidid>https://orcid.org/0000-0002-9434-9494</orcidid><orcidid>https://orcid.org/0000-0002-0556-1179</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid></search><sort><creationdate>20220804</creationdate><title>Molecular simulations of the interfacial properties in silk-hydroxyapatite composites</title><author>López Barreiro, Diego ; Martín-Moldes, Zaira ; Blanco Fernández, Adrián ; Fitzpatrick, Vincent ; Kaplan, David L ; Buehler, Markus J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-750d7cc2e612e85e3384f4eddabce1364d40f156025a83754a183259b8bb7aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Biocompatibility</topic><topic>Biological materials</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Composite materials</topic><topic>Dynamic structural analysis</topic><topic>Hydroxyapatite</topic><topic>Interfacial properties</topic><topic>Load bearing elements</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nacre</topic><topic>Regeneration (physiology)</topic><topic>Robotics</topic><topic>Sheets</topic><topic>Silk</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López Barreiro, Diego</creatorcontrib><creatorcontrib>Martín-Moldes, Zaira</creatorcontrib><creatorcontrib>Blanco Fernández, Adrián</creatorcontrib><creatorcontrib>Fitzpatrick, Vincent</creatorcontrib><creatorcontrib>Kaplan, David L</creatorcontrib><creatorcontrib>Buehler, Markus J</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López Barreiro, Diego</au><au>Martín-Moldes, Zaira</au><au>Blanco Fernández, Adrián</au><au>Fitzpatrick, Vincent</au><au>Kaplan, David L</au><au>Buehler, Markus J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular simulations of the interfacial properties in silk-hydroxyapatite composites</atitle><jtitle>Nanoscale</jtitle><date>2022-08-04</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1929</spage><epage>1939</epage><pages>1929-1939</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo . Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration. This combined computational-experimental work describes with atomistic resolution the interfacial interaction between the silk and hydroxyapatite and the potential implications for the development of osteoinductive silk biomaterials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>35852800</pmid><doi>10.1039/d2nr01989b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2932-8064</orcidid><orcidid>https://orcid.org/0000-0002-9245-7774</orcidid><orcidid>https://orcid.org/0000-0002-9346-655X</orcidid><orcidid>https://orcid.org/0000-0002-9434-9494</orcidid><orcidid>https://orcid.org/0000-0002-0556-1179</orcidid><orcidid>https://orcid.org/0000-0002-4173-9659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2022-08, Vol.14 (3), p.1929-1939
issn 2040-3364
2040-3372
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9351605
source Royal Society Of Chemistry Journals 2008-
subjects Annealing
Biocompatibility
Biological materials
Biomedical materials
Chemistry
Composite materials
Dynamic structural analysis
Hydroxyapatite
Interfacial properties
Load bearing elements
Mechanical properties
Molecular dynamics
Nacre
Regeneration (physiology)
Robotics
Sheets
Silk
Water vapor
title Molecular simulations of the interfacial properties in silk-hydroxyapatite composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20simulations%20of%20the%20interfacial%20properties%20in%20silk-hydroxyapatite%20composites&rft.jtitle=Nanoscale&rft.au=L%C3%B3pez%20Barreiro,%20Diego&rft.date=2022-08-04&rft.volume=14&rft.issue=3&rft.spage=1929&rft.epage=1939&rft.pages=1929-1939&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr01989b&rft_dat=%3Cproquest_pubme%3E2691788778%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697709427&rft_id=info:pmid/35852800&rfr_iscdi=true