Design of Polymeric Thin Films to Program Microbial Biofilm Growth, Virulence and Metabolism

Biofilms are ubiquitous in nature, yet strategies to program biofilm behavior without genetic manipulation are limited. Due to the small selection of materials that have been used to successfully grow biofilms, availability of functional materials that are able to support growth and program microbia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2021-10, Vol.22 (12), p.4933-4944
Hauptverfasser: Donadt, Trevor B., Wu, Yinan, Lang, Jiayan, Li, Sijin, Yang, Rong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4944
container_issue 12
container_start_page 4933
container_title Biomacromolecules
container_volume 22
creator Donadt, Trevor B.
Wu, Yinan
Lang, Jiayan
Li, Sijin
Yang, Rong
description Biofilms are ubiquitous in nature, yet strategies to program biofilm behavior without genetic manipulation are limited. Due to the small selection of materials that have been used to successfully grow biofilms, availability of functional materials that are able to support growth and program microbial functions remains a critical bottleneck in the design and deployment of functional yet safe microbes. Here, we report the design of insoluble pyridine-rich polymer surfaces synthesized using initiated chemical vapor deposition (iCVD) which led to programmed biofilm growth and virulence in Pseudomonas aeruginosa (PAO1). A variety of extracellular virulence factors exhibited decreased production in response to the functional polymer, most significantly biomolecules also associated with iron acquisition, validating the material design strategy reported here. This report signifies a rich potential for materials-based strategies to program the behavior of naturally occurring biofilms, which complement the existing genetic engineering toolkits in advancing microbiology, translational medicine, and biomanufacturing.
doi_str_mv 10.1021/acs.biomac.1c00731
format Article
fullrecord <record><control><sourceid>pubmedcentral</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9351385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pubmedcentral_primary_oai_pubmedcentral_nih_gov_9351385</sourcerecordid><originalsourceid>FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_93513853</originalsourceid><addsrcrecordid>eNqljLtOwzAUQC0EouXxA0z3A0iw4zyahQFoYanUoWJCshzXSS6yfSs7BfXvQYiFmekc6UiHsRvBc8ELcadNyjskr00uDOeNFCdsLqqizsqaF6c_XmVN0zYzdpHSO-e8lWV1zmayrNuyqRdz9vZkEw4BqIcNuaO3EQ1sRwywQucTTASbSEPUHtZoInWoHTwg9d8VniN9TuMtvGI8OBuMBR12sLaT7shh8lfsrNcu2etfXrL71XL7-JLtD523O2PDFLVT-4hex6MijepvCTiqgT5UKyshF5X89-ALr0xkPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of Polymeric Thin Films to Program Microbial Biofilm Growth, Virulence and Metabolism</title><source>American Chemical Society Journals</source><creator>Donadt, Trevor B. ; Wu, Yinan ; Lang, Jiayan ; Li, Sijin ; Yang, Rong</creator><creatorcontrib>Donadt, Trevor B. ; Wu, Yinan ; Lang, Jiayan ; Li, Sijin ; Yang, Rong</creatorcontrib><description>Biofilms are ubiquitous in nature, yet strategies to program biofilm behavior without genetic manipulation are limited. Due to the small selection of materials that have been used to successfully grow biofilms, availability of functional materials that are able to support growth and program microbial functions remains a critical bottleneck in the design and deployment of functional yet safe microbes. Here, we report the design of insoluble pyridine-rich polymer surfaces synthesized using initiated chemical vapor deposition (iCVD) which led to programmed biofilm growth and virulence in Pseudomonas aeruginosa (PAO1). A variety of extracellular virulence factors exhibited decreased production in response to the functional polymer, most significantly biomolecules also associated with iron acquisition, validating the material design strategy reported here. This report signifies a rich potential for materials-based strategies to program the behavior of naturally occurring biofilms, which complement the existing genetic engineering toolkits in advancing microbiology, translational medicine, and biomanufacturing.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.1c00731</identifier><identifier>PMID: 34694768</identifier><language>eng</language><ispartof>Biomacromolecules, 2021-10, Vol.22 (12), p.4933-4944</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Donadt, Trevor B.</creatorcontrib><creatorcontrib>Wu, Yinan</creatorcontrib><creatorcontrib>Lang, Jiayan</creatorcontrib><creatorcontrib>Li, Sijin</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><title>Design of Polymeric Thin Films to Program Microbial Biofilm Growth, Virulence and Metabolism</title><title>Biomacromolecules</title><description>Biofilms are ubiquitous in nature, yet strategies to program biofilm behavior without genetic manipulation are limited. Due to the small selection of materials that have been used to successfully grow biofilms, availability of functional materials that are able to support growth and program microbial functions remains a critical bottleneck in the design and deployment of functional yet safe microbes. Here, we report the design of insoluble pyridine-rich polymer surfaces synthesized using initiated chemical vapor deposition (iCVD) which led to programmed biofilm growth and virulence in Pseudomonas aeruginosa (PAO1). A variety of extracellular virulence factors exhibited decreased production in response to the functional polymer, most significantly biomolecules also associated with iron acquisition, validating the material design strategy reported here. This report signifies a rich potential for materials-based strategies to program the behavior of naturally occurring biofilms, which complement the existing genetic engineering toolkits in advancing microbiology, translational medicine, and biomanufacturing.</description><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqljLtOwzAUQC0EouXxA0z3A0iw4zyahQFoYanUoWJCshzXSS6yfSs7BfXvQYiFmekc6UiHsRvBc8ELcadNyjskr00uDOeNFCdsLqqizsqaF6c_XmVN0zYzdpHSO-e8lWV1zmayrNuyqRdz9vZkEw4BqIcNuaO3EQ1sRwywQucTTASbSEPUHtZoInWoHTwg9d8VniN9TuMtvGI8OBuMBR12sLaT7shh8lfsrNcu2etfXrL71XL7-JLtD523O2PDFLVT-4hex6MijepvCTiqgT5UKyshF5X89-ALr0xkPg</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Donadt, Trevor B.</creator><creator>Wu, Yinan</creator><creator>Lang, Jiayan</creator><creator>Li, Sijin</creator><creator>Yang, Rong</creator><scope>5PM</scope></search><sort><creationdate>20211025</creationdate><title>Design of Polymeric Thin Films to Program Microbial Biofilm Growth, Virulence and Metabolism</title><author>Donadt, Trevor B. ; Wu, Yinan ; Lang, Jiayan ; Li, Sijin ; Yang, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmedcentral_primary_oai_pubmedcentral_nih_gov_93513853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donadt, Trevor B.</creatorcontrib><creatorcontrib>Wu, Yinan</creatorcontrib><creatorcontrib>Lang, Jiayan</creatorcontrib><creatorcontrib>Li, Sijin</creatorcontrib><creatorcontrib>Yang, Rong</creatorcontrib><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donadt, Trevor B.</au><au>Wu, Yinan</au><au>Lang, Jiayan</au><au>Li, Sijin</au><au>Yang, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Polymeric Thin Films to Program Microbial Biofilm Growth, Virulence and Metabolism</atitle><jtitle>Biomacromolecules</jtitle><date>2021-10-25</date><risdate>2021</risdate><volume>22</volume><issue>12</issue><spage>4933</spage><epage>4944</epage><pages>4933-4944</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Biofilms are ubiquitous in nature, yet strategies to program biofilm behavior without genetic manipulation are limited. Due to the small selection of materials that have been used to successfully grow biofilms, availability of functional materials that are able to support growth and program microbial functions remains a critical bottleneck in the design and deployment of functional yet safe microbes. Here, we report the design of insoluble pyridine-rich polymer surfaces synthesized using initiated chemical vapor deposition (iCVD) which led to programmed biofilm growth and virulence in Pseudomonas aeruginosa (PAO1). A variety of extracellular virulence factors exhibited decreased production in response to the functional polymer, most significantly biomolecules also associated with iron acquisition, validating the material design strategy reported here. This report signifies a rich potential for materials-based strategies to program the behavior of naturally occurring biofilms, which complement the existing genetic engineering toolkits in advancing microbiology, translational medicine, and biomanufacturing.</abstract><pmid>34694768</pmid><doi>10.1021/acs.biomac.1c00731</doi></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2021-10, Vol.22 (12), p.4933-4944
issn 1525-7797
1526-4602
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9351385
source American Chemical Society Journals
title Design of Polymeric Thin Films to Program Microbial Biofilm Growth, Virulence and Metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmedcentral&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Polymeric%20Thin%20Films%20to%20Program%20Microbial%20Biofilm%20Growth,%20Virulence%20and%20Metabolism&rft.jtitle=Biomacromolecules&rft.au=Donadt,%20Trevor%20B.&rft.date=2021-10-25&rft.volume=22&rft.issue=12&rft.spage=4933&rft.epage=4944&rft.pages=4933-4944&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.1c00731&rft_dat=%3Cpubmedcentral%3Epubmedcentral_primary_oai_pubmedcentral_nih_gov_9351385%3C/pubmedcentral%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34694768&rfr_iscdi=true