A spatial model to jointly analyze self‐reported survey data of COVID‐19 symptoms and official COVID‐19 incidence data

This work presents a joint spatial modeling framework to improve estimation of the spatial distribution of the latent COVID‐19 incidence in Belgium, based on test‐confirmed COVID‐19 cases and crowd‐sourced symptoms data as reported in a large‐scale online survey. Correction is envisioned for stochas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2023-01, Vol.65 (1), p.e2100186-n/a
Hauptverfasser: Vranckx, Maren, Faes, Christel, Molenberghs, Geert, Hens, Niel, Beutels, Philippe, Van Damme, Pierre, Aerts, Jan, Petrof, Oana, Pepermans, Koen, Neyens, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2100186
container_title Biometrical journal
container_volume 65
creator Vranckx, Maren
Faes, Christel
Molenberghs, Geert
Hens, Niel
Beutels, Philippe
Van Damme, Pierre
Aerts, Jan
Petrof, Oana
Pepermans, Koen
Neyens, Thomas
description This work presents a joint spatial modeling framework to improve estimation of the spatial distribution of the latent COVID‐19 incidence in Belgium, based on test‐confirmed COVID‐19 cases and crowd‐sourced symptoms data as reported in a large‐scale online survey. Correction is envisioned for stochastic dependence between the survey's response rate and spatial COVID‐19 incidence, commonly known as preferential sampling, but not found significant. Results show that an online survey can provide valuable auxiliary data to optimize spatial COVID‐19 incidence estimation based on confirmed cases in situations with limited testing capacity. Furthermore, it is shown that an online survey on COVID‐19 symptoms with a sufficiently large sample size per spatial entity is capable of pinpointing the same locations that appear as test‐confirmed clusters, approximately 1 week earlier. We conclude that a large‐scale online study provides an inexpensive and flexible method to collect timely information of an epidemic during its early phase, which can be used by policy makers in an early phase of an epidemic and in conjunction with other monitoring systems.
doi_str_mv 10.1002/bimj.202100186
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9349774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688570065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4634-cf5cd67799961a79b683c357beac29323426a477b8dc23b5ed51349a73c4bee83</originalsourceid><addsrcrecordid>eNqFkb-O1DAQhy0E4paDlhJZoqHJ4tiOHTdId8u_RYeuAVrLcSbglRMHOzkURMEj8Iw8CV72WB00VJY133yamR9CD0uyLgmhTxvX79aU0Pwpa3ELrcqKlgUnTNxGK8IoK1jN5Qm6l9KOEKIIp3fRCavqTKt6hb6d4TSayRmP-9CCx1PAu-CGyS_YDMYvXwEn8N3P7z8ijCFO0OI0xytYcGsmg0OHN5cfts9zvVQ4Lf04hT7l1jaXOmf34huAG6xrYbDwu_s-utMZn-DB9XuK3r988W7zuri4fLXdnF0UlgvGC9tVthVSKqVEaaRqRM0sq2QDxlKVd-RUGC5lU7eWsqaCtioZV0YyyxuAmp2iZwfvODc9tBaGKRqvx-h6ExcdjNN_Vwb3SX8MV1pljZQ8C55cC2L4PEOadO-SBe_NAGFOmoq6riQhosro43_QXZhjvmSmpOCSkYNwfaBsDClF6I7DlETvg9X7YPUx2Nzw6OYKR_xPkhngB-CL87D8R6fPt2_fUJYH-QUVXLHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764730774</pqid></control><display><type>article</type><title>A spatial model to jointly analyze self‐reported survey data of COVID‐19 symptoms and official COVID‐19 incidence data</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Vranckx, Maren ; Faes, Christel ; Molenberghs, Geert ; Hens, Niel ; Beutels, Philippe ; Van Damme, Pierre ; Aerts, Jan ; Petrof, Oana ; Pepermans, Koen ; Neyens, Thomas</creator><creatorcontrib>Vranckx, Maren ; Faes, Christel ; Molenberghs, Geert ; Hens, Niel ; Beutels, Philippe ; Van Damme, Pierre ; Aerts, Jan ; Petrof, Oana ; Pepermans, Koen ; Neyens, Thomas</creatorcontrib><description>This work presents a joint spatial modeling framework to improve estimation of the spatial distribution of the latent COVID‐19 incidence in Belgium, based on test‐confirmed COVID‐19 cases and crowd‐sourced symptoms data as reported in a large‐scale online survey. Correction is envisioned for stochastic dependence between the survey's response rate and spatial COVID‐19 incidence, commonly known as preferential sampling, but not found significant. Results show that an online survey can provide valuable auxiliary data to optimize spatial COVID‐19 incidence estimation based on confirmed cases in situations with limited testing capacity. Furthermore, it is shown that an online survey on COVID‐19 symptoms with a sufficiently large sample size per spatial entity is capable of pinpointing the same locations that appear as test‐confirmed clusters, approximately 1 week earlier. We conclude that a large‐scale online study provides an inexpensive and flexible method to collect timely information of an epidemic during its early phase, which can be used by policy makers in an early phase of an epidemic and in conjunction with other monitoring systems.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202100186</identifier><identifier>PMID: 35818698</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>bivariate conditional autoregressive random effect ; COVID-19 ; COVID-19 - epidemiology ; disease mapping ; Epidemics ; Humans ; Incidence ; Polls &amp; surveys ; preferential sampling ; SARS-CoV-2 ; Self Report ; Spatial analysis ; Spatial data ; Spatial distribution ; Stochasticity ; survey data ; Surveys</subject><ispartof>Biometrical journal, 2023-01, Vol.65 (1), p.e2100186-n/a</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4634-cf5cd67799961a79b683c357beac29323426a477b8dc23b5ed51349a73c4bee83</citedby><cites>FETCH-LOGICAL-c4634-cf5cd67799961a79b683c357beac29323426a477b8dc23b5ed51349a73c4bee83</cites><orcidid>0000-0002-6509-7777 ; 0000-0001-7294-9491 ; 0000-0002-1802-9640 ; 0000-0003-2364-7555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202100186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202100186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35818698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vranckx, Maren</creatorcontrib><creatorcontrib>Faes, Christel</creatorcontrib><creatorcontrib>Molenberghs, Geert</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><creatorcontrib>Beutels, Philippe</creatorcontrib><creatorcontrib>Van Damme, Pierre</creatorcontrib><creatorcontrib>Aerts, Jan</creatorcontrib><creatorcontrib>Petrof, Oana</creatorcontrib><creatorcontrib>Pepermans, Koen</creatorcontrib><creatorcontrib>Neyens, Thomas</creatorcontrib><title>A spatial model to jointly analyze self‐reported survey data of COVID‐19 symptoms and official COVID‐19 incidence data</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>This work presents a joint spatial modeling framework to improve estimation of the spatial distribution of the latent COVID‐19 incidence in Belgium, based on test‐confirmed COVID‐19 cases and crowd‐sourced symptoms data as reported in a large‐scale online survey. Correction is envisioned for stochastic dependence between the survey's response rate and spatial COVID‐19 incidence, commonly known as preferential sampling, but not found significant. Results show that an online survey can provide valuable auxiliary data to optimize spatial COVID‐19 incidence estimation based on confirmed cases in situations with limited testing capacity. Furthermore, it is shown that an online survey on COVID‐19 symptoms with a sufficiently large sample size per spatial entity is capable of pinpointing the same locations that appear as test‐confirmed clusters, approximately 1 week earlier. We conclude that a large‐scale online study provides an inexpensive and flexible method to collect timely information of an epidemic during its early phase, which can be used by policy makers in an early phase of an epidemic and in conjunction with other monitoring systems.</description><subject>bivariate conditional autoregressive random effect</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>disease mapping</subject><subject>Epidemics</subject><subject>Humans</subject><subject>Incidence</subject><subject>Polls &amp; surveys</subject><subject>preferential sampling</subject><subject>SARS-CoV-2</subject><subject>Self Report</subject><subject>Spatial analysis</subject><subject>Spatial data</subject><subject>Spatial distribution</subject><subject>Stochasticity</subject><subject>survey data</subject><subject>Surveys</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb-O1DAQhy0E4paDlhJZoqHJ4tiOHTdId8u_RYeuAVrLcSbglRMHOzkURMEj8Iw8CV72WB00VJY133yamR9CD0uyLgmhTxvX79aU0Pwpa3ELrcqKlgUnTNxGK8IoK1jN5Qm6l9KOEKIIp3fRCavqTKt6hb6d4TSayRmP-9CCx1PAu-CGyS_YDMYvXwEn8N3P7z8ijCFO0OI0xytYcGsmg0OHN5cfts9zvVQ4Lf04hT7l1jaXOmf34huAG6xrYbDwu_s-utMZn-DB9XuK3r988W7zuri4fLXdnF0UlgvGC9tVthVSKqVEaaRqRM0sq2QDxlKVd-RUGC5lU7eWsqaCtioZV0YyyxuAmp2iZwfvODc9tBaGKRqvx-h6ExcdjNN_Vwb3SX8MV1pljZQ8C55cC2L4PEOadO-SBe_NAGFOmoq6riQhosro43_QXZhjvmSmpOCSkYNwfaBsDClF6I7DlETvg9X7YPUx2Nzw6OYKR_xPkhngB-CL87D8R6fPt2_fUJYH-QUVXLHA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Vranckx, Maren</creator><creator>Faes, Christel</creator><creator>Molenberghs, Geert</creator><creator>Hens, Niel</creator><creator>Beutels, Philippe</creator><creator>Van Damme, Pierre</creator><creator>Aerts, Jan</creator><creator>Petrof, Oana</creator><creator>Pepermans, Koen</creator><creator>Neyens, Thomas</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6509-7777</orcidid><orcidid>https://orcid.org/0000-0001-7294-9491</orcidid><orcidid>https://orcid.org/0000-0002-1802-9640</orcidid><orcidid>https://orcid.org/0000-0003-2364-7555</orcidid></search><sort><creationdate>202301</creationdate><title>A spatial model to jointly analyze self‐reported survey data of COVID‐19 symptoms and official COVID‐19 incidence data</title><author>Vranckx, Maren ; Faes, Christel ; Molenberghs, Geert ; Hens, Niel ; Beutels, Philippe ; Van Damme, Pierre ; Aerts, Jan ; Petrof, Oana ; Pepermans, Koen ; Neyens, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4634-cf5cd67799961a79b683c357beac29323426a477b8dc23b5ed51349a73c4bee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bivariate conditional autoregressive random effect</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>disease mapping</topic><topic>Epidemics</topic><topic>Humans</topic><topic>Incidence</topic><topic>Polls &amp; surveys</topic><topic>preferential sampling</topic><topic>SARS-CoV-2</topic><topic>Self Report</topic><topic>Spatial analysis</topic><topic>Spatial data</topic><topic>Spatial distribution</topic><topic>Stochasticity</topic><topic>survey data</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vranckx, Maren</creatorcontrib><creatorcontrib>Faes, Christel</creatorcontrib><creatorcontrib>Molenberghs, Geert</creatorcontrib><creatorcontrib>Hens, Niel</creatorcontrib><creatorcontrib>Beutels, Philippe</creatorcontrib><creatorcontrib>Van Damme, Pierre</creatorcontrib><creatorcontrib>Aerts, Jan</creatorcontrib><creatorcontrib>Petrof, Oana</creatorcontrib><creatorcontrib>Pepermans, Koen</creatorcontrib><creatorcontrib>Neyens, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vranckx, Maren</au><au>Faes, Christel</au><au>Molenberghs, Geert</au><au>Hens, Niel</au><au>Beutels, Philippe</au><au>Van Damme, Pierre</au><au>Aerts, Jan</au><au>Petrof, Oana</au><au>Pepermans, Koen</au><au>Neyens, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spatial model to jointly analyze self‐reported survey data of COVID‐19 symptoms and official COVID‐19 incidence data</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2023-01</date><risdate>2023</risdate><volume>65</volume><issue>1</issue><spage>e2100186</spage><epage>n/a</epage><pages>e2100186-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>This work presents a joint spatial modeling framework to improve estimation of the spatial distribution of the latent COVID‐19 incidence in Belgium, based on test‐confirmed COVID‐19 cases and crowd‐sourced symptoms data as reported in a large‐scale online survey. Correction is envisioned for stochastic dependence between the survey's response rate and spatial COVID‐19 incidence, commonly known as preferential sampling, but not found significant. Results show that an online survey can provide valuable auxiliary data to optimize spatial COVID‐19 incidence estimation based on confirmed cases in situations with limited testing capacity. Furthermore, it is shown that an online survey on COVID‐19 symptoms with a sufficiently large sample size per spatial entity is capable of pinpointing the same locations that appear as test‐confirmed clusters, approximately 1 week earlier. We conclude that a large‐scale online study provides an inexpensive and flexible method to collect timely information of an epidemic during its early phase, which can be used by policy makers in an early phase of an epidemic and in conjunction with other monitoring systems.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>35818698</pmid><doi>10.1002/bimj.202100186</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6509-7777</orcidid><orcidid>https://orcid.org/0000-0001-7294-9491</orcidid><orcidid>https://orcid.org/0000-0002-1802-9640</orcidid><orcidid>https://orcid.org/0000-0003-2364-7555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2023-01, Vol.65 (1), p.e2100186-n/a
issn 0323-3847
1521-4036
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9349774
source MEDLINE; Access via Wiley Online Library
subjects bivariate conditional autoregressive random effect
COVID-19
COVID-19 - epidemiology
disease mapping
Epidemics
Humans
Incidence
Polls & surveys
preferential sampling
SARS-CoV-2
Self Report
Spatial analysis
Spatial data
Spatial distribution
Stochasticity
survey data
Surveys
title A spatial model to jointly analyze self‐reported survey data of COVID‐19 symptoms and official COVID‐19 incidence data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A02%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spatial%20model%20to%20jointly%20analyze%20self%E2%80%90reported%20survey%20data%20of%20COVID%E2%80%9019%20symptoms%20and%20official%20COVID%E2%80%9019%20incidence%20data&rft.jtitle=Biometrical%20journal&rft.au=Vranckx,%20Maren&rft.date=2023-01&rft.volume=65&rft.issue=1&rft.spage=e2100186&rft.epage=n/a&rft.pages=e2100186-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202100186&rft_dat=%3Cproquest_pubme%3E2688570065%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2764730774&rft_id=info:pmid/35818698&rfr_iscdi=true