Automated matching of two‐time X‐ray photon correlation maps from phase‐separating proteins with Cahn–Hilliard‐type simulations using auto‐encoder networks

Machine learning methods are used for an automated classification of experimental two‐time X‐ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard‐type simulations of liqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2022-08, Vol.55 (4), p.751-757
Hauptverfasser: Timmermann, Sonja, Starostin, Vladimir, Girelli, Anita, Ragulskaya, Anastasia, Rahmann, Hendrik, Reiser, Mario, Begam, Nafisa, Randolph, Lisa, Sprung, Michael, Westermeier, Fabian, Zhang, Fajun, Schreiber, Frank, Gutt, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 757
container_issue 4
container_start_page 751
container_title Journal of applied crystallography
container_volume 55
creator Timmermann, Sonja
Starostin, Vladimir
Girelli, Anita
Ragulskaya, Anastasia
Rahmann, Hendrik
Reiser, Mario
Begam, Nafisa
Randolph, Lisa
Sprung, Michael
Westermeier, Fabian
Zhang, Fajun
Schreiber, Frank
Gutt, Christian
description Machine learning methods are used for an automated classification of experimental two‐time X‐ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard‐type simulations of liquid–liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto‐encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high‐brilliance synchrotron and X‐ray free‐electron laser sources, facilitating fast comparison with phase field models of phase separation. Two‐time correlation maps are classified in a simulation framework using an auto‐encoder network.
doi_str_mv 10.1107/S1600576722004435
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9348880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697464456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3698-bc6c043ab355a49cf120904361fa2b9b535392257ccc3b9051274138972a24453</originalsourceid><addsrcrecordid>eNqFUsuKFDEUDaI4D_0AdwE3bnrMs6qyEYZGbWVA8IW7kEqnpjJWJWWSsundfILgR_hf8yXeogfxsXCTXO55cG5yEXpEyRmlpH76jlaEyLqqGSNECC7voOOltVp6d3-rj9BJzleE0IV6Hx1xqWpRC3qMfpzPJY6muC2G0_Y-XOLY4bKLN9ffih8d_gRFMns89bHEgG1MyQ2meKhHM2XcpTgCaLIDYnaTSQCCy5RicT5kvPOlx2vTh5vr7xs_DN6k7WK-nxzOfpwPZhnPeZEZyAOoCzZuXcLBQZT0OT9A9zozZPfw9j5FH148f7_erC7evHy1Pr9YWV6pZtXayhLBTculNELZjjKioFHRzrBWtZJLrhiTtbWWt4pIyuAZeKNqZpgQkp-iZwffaW5Ht7UulGQGPSU_mrTX0Xj9JxJ8ry_jV624aJqGgMGTW4MUv8wuFz36bN0wmODinDWrCRcUmBVQH_9FvYpzCjCeZhV8UAWBFhY9sGyKOSfX_QpDiV7WQP-zBqBRB83OD27_f4F-vX7LPm4klQ3_CbDqvVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697464456</pqid></control><display><type>article</type><title>Automated matching of two‐time X‐ray photon correlation maps from phase‐separating proteins with Cahn–Hilliard‐type simulations using auto‐encoder networks</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Timmermann, Sonja ; Starostin, Vladimir ; Girelli, Anita ; Ragulskaya, Anastasia ; Rahmann, Hendrik ; Reiser, Mario ; Begam, Nafisa ; Randolph, Lisa ; Sprung, Michael ; Westermeier, Fabian ; Zhang, Fajun ; Schreiber, Frank ; Gutt, Christian</creator><creatorcontrib>Timmermann, Sonja ; Starostin, Vladimir ; Girelli, Anita ; Ragulskaya, Anastasia ; Rahmann, Hendrik ; Reiser, Mario ; Begam, Nafisa ; Randolph, Lisa ; Sprung, Michael ; Westermeier, Fabian ; Zhang, Fajun ; Schreiber, Frank ; Gutt, Christian</creatorcontrib><description>Machine learning methods are used for an automated classification of experimental two‐time X‐ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard‐type simulations of liquid–liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto‐encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high‐brilliance synchrotron and X‐ray free‐electron laser sources, facilitating fast comparison with phase field models of phase separation. Two‐time correlation maps are classified in a simulation framework using an auto‐encoder network.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576722004435</identifier><identifier>PMID: 35974741</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>auto‐encoders ; Cahn–Hilliard ; Coders ; Correlation ; Evolutionary algorithms ; Evolutionary computation ; Liquid phases ; Machine learning ; Matching ; Phase separation ; Photons ; protein dynamics ; Proteins ; Research Papers ; Simulation ; Synchrotrons ; XPCS ; X‐ray photon correlation spectroscopy</subject><ispartof>Journal of applied crystallography, 2022-08, Vol.55 (4), p.751-757</ispartof><rights>2022 Sonja Timmermann et al. published by IUCr Journals.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Sonja Timmermann et al. 2022 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3698-bc6c043ab355a49cf120904361fa2b9b535392257ccc3b9051274138972a24453</citedby><cites>FETCH-LOGICAL-c3698-bc6c043ab355a49cf120904361fa2b9b535392257ccc3b9051274138972a24453</cites><orcidid>0000-0003-4533-6256 ; 0000-0001-7639-8594 ; 0000-0003-3659-6718 ; 0000-0002-0051-8542 ; 0000-0003-0160-9478 ; 0000-0002-3872-2450 ; 0000-0002-5391-8080 ; 0000-0002-1426-7182 ; 0000-0002-5428-9044 ; 0000-0003-0696-206X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576722004435$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576722004435$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Timmermann, Sonja</creatorcontrib><creatorcontrib>Starostin, Vladimir</creatorcontrib><creatorcontrib>Girelli, Anita</creatorcontrib><creatorcontrib>Ragulskaya, Anastasia</creatorcontrib><creatorcontrib>Rahmann, Hendrik</creatorcontrib><creatorcontrib>Reiser, Mario</creatorcontrib><creatorcontrib>Begam, Nafisa</creatorcontrib><creatorcontrib>Randolph, Lisa</creatorcontrib><creatorcontrib>Sprung, Michael</creatorcontrib><creatorcontrib>Westermeier, Fabian</creatorcontrib><creatorcontrib>Zhang, Fajun</creatorcontrib><creatorcontrib>Schreiber, Frank</creatorcontrib><creatorcontrib>Gutt, Christian</creatorcontrib><title>Automated matching of two‐time X‐ray photon correlation maps from phase‐separating proteins with Cahn–Hilliard‐type simulations using auto‐encoder networks</title><title>Journal of applied crystallography</title><description>Machine learning methods are used for an automated classification of experimental two‐time X‐ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard‐type simulations of liquid–liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto‐encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high‐brilliance synchrotron and X‐ray free‐electron laser sources, facilitating fast comparison with phase field models of phase separation. Two‐time correlation maps are classified in a simulation framework using an auto‐encoder network.</description><subject>auto‐encoders</subject><subject>Cahn–Hilliard</subject><subject>Coders</subject><subject>Correlation</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Liquid phases</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Phase separation</subject><subject>Photons</subject><subject>protein dynamics</subject><subject>Proteins</subject><subject>Research Papers</subject><subject>Simulation</subject><subject>Synchrotrons</subject><subject>XPCS</subject><subject>X‐ray photon correlation spectroscopy</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUsuKFDEUDaI4D_0AdwE3bnrMs6qyEYZGbWVA8IW7kEqnpjJWJWWSsundfILgR_hf8yXeogfxsXCTXO55cG5yEXpEyRmlpH76jlaEyLqqGSNECC7voOOltVp6d3-rj9BJzleE0IV6Hx1xqWpRC3qMfpzPJY6muC2G0_Y-XOLY4bKLN9ffih8d_gRFMns89bHEgG1MyQ2meKhHM2XcpTgCaLIDYnaTSQCCy5RicT5kvPOlx2vTh5vr7xs_DN6k7WK-nxzOfpwPZhnPeZEZyAOoCzZuXcLBQZT0OT9A9zozZPfw9j5FH148f7_erC7evHy1Pr9YWV6pZtXayhLBTculNELZjjKioFHRzrBWtZJLrhiTtbWWt4pIyuAZeKNqZpgQkp-iZwffaW5Ht7UulGQGPSU_mrTX0Xj9JxJ8ry_jV624aJqGgMGTW4MUv8wuFz36bN0wmODinDWrCRcUmBVQH_9FvYpzCjCeZhV8UAWBFhY9sGyKOSfX_QpDiV7WQP-zBqBRB83OD27_f4F-vX7LPm4klQ3_CbDqvVQ</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Timmermann, Sonja</creator><creator>Starostin, Vladimir</creator><creator>Girelli, Anita</creator><creator>Ragulskaya, Anastasia</creator><creator>Rahmann, Hendrik</creator><creator>Reiser, Mario</creator><creator>Begam, Nafisa</creator><creator>Randolph, Lisa</creator><creator>Sprung, Michael</creator><creator>Westermeier, Fabian</creator><creator>Zhang, Fajun</creator><creator>Schreiber, Frank</creator><creator>Gutt, Christian</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4533-6256</orcidid><orcidid>https://orcid.org/0000-0001-7639-8594</orcidid><orcidid>https://orcid.org/0000-0003-3659-6718</orcidid><orcidid>https://orcid.org/0000-0002-0051-8542</orcidid><orcidid>https://orcid.org/0000-0003-0160-9478</orcidid><orcidid>https://orcid.org/0000-0002-3872-2450</orcidid><orcidid>https://orcid.org/0000-0002-5391-8080</orcidid><orcidid>https://orcid.org/0000-0002-1426-7182</orcidid><orcidid>https://orcid.org/0000-0002-5428-9044</orcidid><orcidid>https://orcid.org/0000-0003-0696-206X</orcidid></search><sort><creationdate>202208</creationdate><title>Automated matching of two‐time X‐ray photon correlation maps from phase‐separating proteins with Cahn–Hilliard‐type simulations using auto‐encoder networks</title><author>Timmermann, Sonja ; Starostin, Vladimir ; Girelli, Anita ; Ragulskaya, Anastasia ; Rahmann, Hendrik ; Reiser, Mario ; Begam, Nafisa ; Randolph, Lisa ; Sprung, Michael ; Westermeier, Fabian ; Zhang, Fajun ; Schreiber, Frank ; Gutt, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3698-bc6c043ab355a49cf120904361fa2b9b535392257ccc3b9051274138972a24453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>auto‐encoders</topic><topic>Cahn–Hilliard</topic><topic>Coders</topic><topic>Correlation</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Liquid phases</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Phase separation</topic><topic>Photons</topic><topic>protein dynamics</topic><topic>Proteins</topic><topic>Research Papers</topic><topic>Simulation</topic><topic>Synchrotrons</topic><topic>XPCS</topic><topic>X‐ray photon correlation spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timmermann, Sonja</creatorcontrib><creatorcontrib>Starostin, Vladimir</creatorcontrib><creatorcontrib>Girelli, Anita</creatorcontrib><creatorcontrib>Ragulskaya, Anastasia</creatorcontrib><creatorcontrib>Rahmann, Hendrik</creatorcontrib><creatorcontrib>Reiser, Mario</creatorcontrib><creatorcontrib>Begam, Nafisa</creatorcontrib><creatorcontrib>Randolph, Lisa</creatorcontrib><creatorcontrib>Sprung, Michael</creatorcontrib><creatorcontrib>Westermeier, Fabian</creatorcontrib><creatorcontrib>Zhang, Fajun</creatorcontrib><creatorcontrib>Schreiber, Frank</creatorcontrib><creatorcontrib>Gutt, Christian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timmermann, Sonja</au><au>Starostin, Vladimir</au><au>Girelli, Anita</au><au>Ragulskaya, Anastasia</au><au>Rahmann, Hendrik</au><au>Reiser, Mario</au><au>Begam, Nafisa</au><au>Randolph, Lisa</au><au>Sprung, Michael</au><au>Westermeier, Fabian</au><au>Zhang, Fajun</au><au>Schreiber, Frank</au><au>Gutt, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated matching of two‐time X‐ray photon correlation maps from phase‐separating proteins with Cahn–Hilliard‐type simulations using auto‐encoder networks</atitle><jtitle>Journal of applied crystallography</jtitle><date>2022-08</date><risdate>2022</risdate><volume>55</volume><issue>4</issue><spage>751</spage><epage>757</epage><pages>751-757</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>Machine learning methods are used for an automated classification of experimental two‐time X‐ray photon correlation maps from an arrested liquid–liquid phase separation of a protein solution. The correlation maps are matched with correlation maps generated with Cahn–Hilliard‐type simulations of liquid–liquid phase separations according to two simulation parameters and in the last step interpreted in the framework of the simulation. The matching routine employs an auto‐encoder network and a differential evolution based algorithm. The method presented here is a first step towards handling large amounts of dynamic data measured at high‐brilliance synchrotron and X‐ray free‐electron laser sources, facilitating fast comparison with phase field models of phase separation. Two‐time correlation maps are classified in a simulation framework using an auto‐encoder network.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>35974741</pmid><doi>10.1107/S1600576722004435</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4533-6256</orcidid><orcidid>https://orcid.org/0000-0001-7639-8594</orcidid><orcidid>https://orcid.org/0000-0003-3659-6718</orcidid><orcidid>https://orcid.org/0000-0002-0051-8542</orcidid><orcidid>https://orcid.org/0000-0003-0160-9478</orcidid><orcidid>https://orcid.org/0000-0002-3872-2450</orcidid><orcidid>https://orcid.org/0000-0002-5391-8080</orcidid><orcidid>https://orcid.org/0000-0002-1426-7182</orcidid><orcidid>https://orcid.org/0000-0002-5428-9044</orcidid><orcidid>https://orcid.org/0000-0003-0696-206X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2022-08, Vol.55 (4), p.751-757
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9348880
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects auto‐encoders
Cahn–Hilliard
Coders
Correlation
Evolutionary algorithms
Evolutionary computation
Liquid phases
Machine learning
Matching
Phase separation
Photons
protein dynamics
Proteins
Research Papers
Simulation
Synchrotrons
XPCS
X‐ray photon correlation spectroscopy
title Automated matching of two‐time X‐ray photon correlation maps from phase‐separating proteins with Cahn–Hilliard‐type simulations using auto‐encoder networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20matching%20of%20two%E2%80%90time%20X%E2%80%90ray%20photon%20correlation%20maps%20from%20phase%E2%80%90separating%20proteins%20with%20Cahn%E2%80%93Hilliard%E2%80%90type%20simulations%20using%20auto%E2%80%90encoder%20networks&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Timmermann,%20Sonja&rft.date=2022-08&rft.volume=55&rft.issue=4&rft.spage=751&rft.epage=757&rft.pages=751-757&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576722004435&rft_dat=%3Cproquest_pubme%3E2697464456%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697464456&rft_id=info:pmid/35974741&rfr_iscdi=true