Native SAD phasing at room temperature

Single‐wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section D, Biological crystallography. Biological crystallography., 2022-08, Vol.78 (8), p.986-996
Hauptverfasser: Greisman, Jack B., Dalton, Kevin M., Sheehan, Candice J., Klureza, Margaret A., Kurinov, Igor, Hekstra, Doeke R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 996
container_issue 8
container_start_page 986
container_title Acta crystallographica. Section D, Biological crystallography.
container_volume 78
creator Greisman, Jack B.
Dalton, Kevin M.
Sheehan, Candice J.
Klureza, Margaret A.
Kurinov, Igor
Hekstra, Doeke R.
description Single‐wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non‐uniform freezing. Here, a strategy is presented to obtain high‐quality data from room‐temperature, single‐crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature. Room‐temperature crystallography enables researchers to resolve the conformational heterogeneity of structures. Here, the native SAD phasing of four structures at 295 K highlights the strengths of room‐temperature diffraction experiments, including detailed anomalous difference maps and alternate conformations that are well supported by the electron density.
doi_str_mv 10.1107/S2059798322006799
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9344477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2697055799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4771-6c10ea44072984d72188d9a13e7d5183f50db71b69ed5bd0433094da9e3ad5763</originalsourceid><addsrcrecordid>eNqFkU1Lw0AQhhdRbKn9AV4kIIiX6H5msxehtH5BUWj14GnZZLdtSpKtu0ml_97U1lL14GmGmWde3pkB4BTBK4Qgvx5jyAQXMcEYwogLcQDa61K4rh3u5S3Q9X4OIUQR4YjQY9AiTKAIY9IGF0-qypYmGPcGwWKmfFZOA1UFztoiqEyxME5VtTMn4Giicm-629gBr3e3L_2HcPh8_9jvDcOUco7CKEXQKEohxyKmmmMUx1ooRAzXDMVkwqBOOEoiYTRLNKSEQEG1EoYozXhEOuBmo7uok8Lo1JSVU7lcuKxQbiWtyuTPTpnN5NQupSCUNhYagcutgLPvtfGVLDKfmjxXpbG1lzgSnESC8rhBz3-hc1u7slnvi4KMNUdtKLShUme9d2ayM4OgXD9C_nlEM3O2v8Vu4vvsDSA2wEeWm9X_irL3NsCjEcMYkU9cB5EG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2697055799</pqid></control><display><type>article</type><title>Native SAD phasing at room temperature</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Greisman, Jack B. ; Dalton, Kevin M. ; Sheehan, Candice J. ; Klureza, Margaret A. ; Kurinov, Igor ; Hekstra, Doeke R.</creator><creatorcontrib>Greisman, Jack B. ; Dalton, Kevin M. ; Sheehan, Candice J. ; Klureza, Margaret A. ; Kurinov, Igor ; Hekstra, Doeke R.</creatorcontrib><description>Single‐wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non‐uniform freezing. Here, a strategy is presented to obtain high‐quality data from room‐temperature, single‐crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature. Room‐temperature crystallography enables researchers to resolve the conformational heterogeneity of structures. Here, the native SAD phasing of four structures at 295 K highlights the strengths of room‐temperature diffraction experiments, including detailed anomalous difference maps and alternate conformations that are well supported by the electron density.</description><identifier>ISSN: 2059-7983</identifier><identifier>ISSN: 0907-4449</identifier><identifier>EISSN: 2059-7983</identifier><identifier>EISSN: 1399-0047</identifier><identifier>DOI: 10.1107/S2059798322006799</identifier><identifier>PMID: 35916223</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Cryogenic temperature ; Crystallization - methods ; Crystallography, X-Ray ; Crystals ; Freezing ; Macromolecules ; model building ; Models, Molecular ; Molecular structure ; native SAD ; phasing ; Protein Conformation ; Proteins ; Proteins - chemistry ; Radiation damage ; Radiation effects ; Research Papers ; Room temperature ; Temperature ; X‐ray crystallography</subject><ispartof>Acta crystallographica. Section D, Biological crystallography., 2022-08, Vol.78 (8), p.986-996</ispartof><rights>2022 Jack B. Greisman et al. published by IUCr Journals.</rights><rights>Copyright Wiley Subscription Services, Inc. Aug 2022</rights><rights>Jack B. Greisman et al. 2022 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4771-6c10ea44072984d72188d9a13e7d5183f50db71b69ed5bd0433094da9e3ad5763</citedby><cites>FETCH-LOGICAL-c4771-6c10ea44072984d72188d9a13e7d5183f50db71b69ed5bd0433094da9e3ad5763</cites><orcidid>0000-0003-2332-9223 ; 0000-0002-6394-2658 ; 0000-0001-9396-085X ; 0000-0001-5774-1297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS2059798322006799$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS2059798322006799$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,778,782,883,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35916223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greisman, Jack B.</creatorcontrib><creatorcontrib>Dalton, Kevin M.</creatorcontrib><creatorcontrib>Sheehan, Candice J.</creatorcontrib><creatorcontrib>Klureza, Margaret A.</creatorcontrib><creatorcontrib>Kurinov, Igor</creatorcontrib><creatorcontrib>Hekstra, Doeke R.</creatorcontrib><title>Native SAD phasing at room temperature</title><title>Acta crystallographica. Section D, Biological crystallography.</title><addtitle>Acta Crystallogr D Struct Biol</addtitle><description>Single‐wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non‐uniform freezing. Here, a strategy is presented to obtain high‐quality data from room‐temperature, single‐crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature. Room‐temperature crystallography enables researchers to resolve the conformational heterogeneity of structures. Here, the native SAD phasing of four structures at 295 K highlights the strengths of room‐temperature diffraction experiments, including detailed anomalous difference maps and alternate conformations that are well supported by the electron density.</description><subject>Cryogenic temperature</subject><subject>Crystallization - methods</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Freezing</subject><subject>Macromolecules</subject><subject>model building</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>native SAD</subject><subject>phasing</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Radiation damage</subject><subject>Radiation effects</subject><subject>Research Papers</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>X‐ray crystallography</subject><issn>2059-7983</issn><issn>0907-4449</issn><issn>2059-7983</issn><issn>1399-0047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1Lw0AQhhdRbKn9AV4kIIiX6H5msxehtH5BUWj14GnZZLdtSpKtu0ml_97U1lL14GmGmWde3pkB4BTBK4Qgvx5jyAQXMcEYwogLcQDa61K4rh3u5S3Q9X4OIUQR4YjQY9AiTKAIY9IGF0-qypYmGPcGwWKmfFZOA1UFztoiqEyxME5VtTMn4Giicm-629gBr3e3L_2HcPh8_9jvDcOUco7CKEXQKEohxyKmmmMUx1ooRAzXDMVkwqBOOEoiYTRLNKSEQEG1EoYozXhEOuBmo7uok8Lo1JSVU7lcuKxQbiWtyuTPTpnN5NQupSCUNhYagcutgLPvtfGVLDKfmjxXpbG1lzgSnESC8rhBz3-hc1u7slnvi4KMNUdtKLShUme9d2ayM4OgXD9C_nlEM3O2v8Vu4vvsDSA2wEeWm9X_irL3NsCjEcMYkU9cB5EG</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Greisman, Jack B.</creator><creator>Dalton, Kevin M.</creator><creator>Sheehan, Candice J.</creator><creator>Klureza, Margaret A.</creator><creator>Kurinov, Igor</creator><creator>Hekstra, Doeke R.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SP</scope><scope>7SR</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2332-9223</orcidid><orcidid>https://orcid.org/0000-0002-6394-2658</orcidid><orcidid>https://orcid.org/0000-0001-9396-085X</orcidid><orcidid>https://orcid.org/0000-0001-5774-1297</orcidid></search><sort><creationdate>202208</creationdate><title>Native SAD phasing at room temperature</title><author>Greisman, Jack B. ; Dalton, Kevin M. ; Sheehan, Candice J. ; Klureza, Margaret A. ; Kurinov, Igor ; Hekstra, Doeke R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4771-6c10ea44072984d72188d9a13e7d5183f50db71b69ed5bd0433094da9e3ad5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cryogenic temperature</topic><topic>Crystallization - methods</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Freezing</topic><topic>Macromolecules</topic><topic>model building</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>native SAD</topic><topic>phasing</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Radiation damage</topic><topic>Radiation effects</topic><topic>Research Papers</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greisman, Jack B.</creatorcontrib><creatorcontrib>Dalton, Kevin M.</creatorcontrib><creatorcontrib>Sheehan, Candice J.</creatorcontrib><creatorcontrib>Klureza, Margaret A.</creatorcontrib><creatorcontrib>Kurinov, Igor</creatorcontrib><creatorcontrib>Hekstra, Doeke R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greisman, Jack B.</au><au>Dalton, Kevin M.</au><au>Sheehan, Candice J.</au><au>Klureza, Margaret A.</au><au>Kurinov, Igor</au><au>Hekstra, Doeke R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Native SAD phasing at room temperature</atitle><jtitle>Acta crystallographica. Section D, Biological crystallography.</jtitle><addtitle>Acta Crystallogr D Struct Biol</addtitle><date>2022-08</date><risdate>2022</risdate><volume>78</volume><issue>8</issue><spage>986</spage><epage>996</epage><pages>986-996</pages><issn>2059-7983</issn><issn>0907-4449</issn><eissn>2059-7983</eissn><eissn>1399-0047</eissn><abstract>Single‐wavelength anomalous diffraction (SAD) is a routine method for overcoming the phase problem when solving macromolecular structures. This technique requires the accurate measurement of intensities to determine differences between Bijvoet pairs. Although SAD experiments are commonly conducted at cryogenic temperatures to mitigate the effects of radiation damage, such temperatures can alter the conformational ensemble of the protein and may impede the merging of data from multiple crystals due to non‐uniform freezing. Here, a strategy is presented to obtain high‐quality data from room‐temperature, single‐crystal experiments. To illustrate the strengths of this approach, native SAD phasing at 6.55 keV was used to solve four structures of three model systems at 295 K. The resulting data sets allow automatic phasing and model building, and reveal alternate conformations that reflect the structure of proteins at room temperature. Room‐temperature crystallography enables researchers to resolve the conformational heterogeneity of structures. Here, the native SAD phasing of four structures at 295 K highlights the strengths of room‐temperature diffraction experiments, including detailed anomalous difference maps and alternate conformations that are well supported by the electron density.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>35916223</pmid><doi>10.1107/S2059798322006799</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2332-9223</orcidid><orcidid>https://orcid.org/0000-0002-6394-2658</orcidid><orcidid>https://orcid.org/0000-0001-9396-085X</orcidid><orcidid>https://orcid.org/0000-0001-5774-1297</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2059-7983
ispartof Acta crystallographica. Section D, Biological crystallography., 2022-08, Vol.78 (8), p.986-996
issn 2059-7983
0907-4449
2059-7983
1399-0047
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9344477
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Cryogenic temperature
Crystallization - methods
Crystallography, X-Ray
Crystals
Freezing
Macromolecules
model building
Models, Molecular
Molecular structure
native SAD
phasing
Protein Conformation
Proteins
Proteins - chemistry
Radiation damage
Radiation effects
Research Papers
Room temperature
Temperature
X‐ray crystallography
title Native SAD phasing at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A59%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Native%20SAD%20phasing%20at%20room%20temperature&rft.jtitle=Acta%20crystallographica.%20Section%20D,%20Biological%20crystallography.&rft.au=Greisman,%20Jack%20B.&rft.date=2022-08&rft.volume=78&rft.issue=8&rft.spage=986&rft.epage=996&rft.pages=986-996&rft.issn=2059-7983&rft.eissn=2059-7983&rft_id=info:doi/10.1107/S2059798322006799&rft_dat=%3Cproquest_pubme%3E2697055799%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2697055799&rft_id=info:pmid/35916223&rfr_iscdi=true