Harmonizing work history data in epidemiologic studies with overlapping employment records

Background Work history data often require major data management including handling of overlapping jobs to avoid overestimating exposure before linkage to job‐exposure matrices (JEMs) is possible. Methods In a case‐cohort study of 1825 male Norwegian offshore petroleum workers, 3979 jobs were report...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of industrial medicine 2019-05, Vol.62 (5), p.422-429
Hauptverfasser: Stenehjem, Jo Steinson, Babigumira, Ronnie, Friesen, Melissa C, Grimsrud, Tom Kristian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 429
container_issue 5
container_start_page 422
container_title American journal of industrial medicine
container_volume 62
creator Stenehjem, Jo Steinson
Babigumira, Ronnie
Friesen, Melissa C
Grimsrud, Tom Kristian
description Background Work history data often require major data management including handling of overlapping jobs to avoid overestimating exposure before linkage to job‐exposure matrices (JEMs) is possible. Methods In a case‐cohort study of 1825 male Norwegian offshore petroleum workers, 3979 jobs were reported (mean duration 2417 days/job; maximum 8 jobs/worker). Each job was assigned to one of 27 occupation categories. Overlapping jobs of the same category (1142 jobs) were collapsed and overlapping jobs of different categories (1013 jobs) were split. The resulting durations were weighted by a factor accounting for the number of overlapping jobs. Results Collapsing overlapping jobs within the same category resulted in 3295 jobs (mean 2629 days/job). Splitting overlapping jobs of different categories increased the number to 4239 jobs (mean 2043 days/job), while the total duration in days dropped by 10%. Conclusions We demonstrated that overlapping employment data structures can be harmonized in a systematic and unbiased way, preparing work history data for linkage to several JEMs.
doi_str_mv 10.1002/ajim.22965
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9341491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216441559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4725-7441d91c9a2c2d201ef17080a5e0718a35d79ee077a827d634675951557c8f833</originalsourceid><addsrcrecordid>eNp9kU1PxCAURYnR6Pix8QcoiTuTKo9CKRsTY_yMxo1u3BAszAxjWyp0nIy_XsZRoxtXj4TD4d1chHaBHAEh9FhPXHNEqSz4ChoAkSIjVLBVNEgDspyXxQbajHFCCAAr2DrayIkEKSUfoKcrHRrfunfXjvDMhxc8drH3YY6N7jV2LbadM7ZxvvYjV-HYT42zEc9cP8b-zYZad93irW262s8b2_Y42MoHE7fR2lDX0e58zS30eHH-cHaV3d5fXp-d3mYVE5RngjEwEiqpaUUNJWCHIEhJNLdEQKlzboS06Sx0SYUpclYILjlwLqpyWOb5FjpZervpc2NNlVYIulZdcI0Oc-W1U39vWjdWI_-mZM6ASUiC_aWgCim7a1Xrg1ZASk6VYFLSRBx8fRH869TGXk38NLQplaIUipSAc5mow2-PjzHY4c8OQNSiKbVoSn02leC931v_oN_VJACWwMzVdv6PSp3eXN8tpR91N55T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216441559</pqid></control><display><type>article</type><title>Harmonizing work history data in epidemiologic studies with overlapping employment records</title><source>Access via Wiley Online Library</source><source>NORA - Norwegian Open Research Archives</source><creator>Stenehjem, Jo Steinson ; Babigumira, Ronnie ; Friesen, Melissa C ; Grimsrud, Tom Kristian</creator><creatorcontrib>Stenehjem, Jo Steinson ; Babigumira, Ronnie ; Friesen, Melissa C ; Grimsrud, Tom Kristian</creatorcontrib><description>Background Work history data often require major data management including handling of overlapping jobs to avoid overestimating exposure before linkage to job‐exposure matrices (JEMs) is possible. Methods In a case‐cohort study of 1825 male Norwegian offshore petroleum workers, 3979 jobs were reported (mean duration 2417 days/job; maximum 8 jobs/worker). Each job was assigned to one of 27 occupation categories. Overlapping jobs of the same category (1142 jobs) were collapsed and overlapping jobs of different categories (1013 jobs) were split. The resulting durations were weighted by a factor accounting for the number of overlapping jobs. Results Collapsing overlapping jobs within the same category resulted in 3295 jobs (mean 2629 days/job). Splitting overlapping jobs of different categories increased the number to 4239 jobs (mean 2043 days/job), while the total duration in days dropped by 10%. Conclusions We demonstrated that overlapping employment data structures can be harmonized in a systematic and unbiased way, preparing work history data for linkage to several JEMs.</description><identifier>ISSN: 0271-3586</identifier><identifier>EISSN: 1097-0274</identifier><identifier>DOI: 10.1002/ajim.22965</identifier><identifier>PMID: 30919995</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Categories ; Credit ratings ; Data management ; Data structures ; Employment ; employment spells ; Epidemiology ; Exposure ; exposure assessment ; job‐exposure matrices (JEMs) ; occupational epidemiology ; Regional stocks ; work history ; Workers</subject><ispartof>American journal of industrial medicine, 2019-05, Vol.62 (5), p.422-429</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4725-7441d91c9a2c2d201ef17080a5e0718a35d79ee077a827d634675951557c8f833</citedby><cites>FETCH-LOGICAL-c4725-7441d91c9a2c2d201ef17080a5e0718a35d79ee077a827d634675951557c8f833</cites><orcidid>0000-0002-1964-5410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajim.22965$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajim.22965$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,26572,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30919995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stenehjem, Jo Steinson</creatorcontrib><creatorcontrib>Babigumira, Ronnie</creatorcontrib><creatorcontrib>Friesen, Melissa C</creatorcontrib><creatorcontrib>Grimsrud, Tom Kristian</creatorcontrib><title>Harmonizing work history data in epidemiologic studies with overlapping employment records</title><title>American journal of industrial medicine</title><addtitle>Am J Ind Med</addtitle><description>Background Work history data often require major data management including handling of overlapping jobs to avoid overestimating exposure before linkage to job‐exposure matrices (JEMs) is possible. Methods In a case‐cohort study of 1825 male Norwegian offshore petroleum workers, 3979 jobs were reported (mean duration 2417 days/job; maximum 8 jobs/worker). Each job was assigned to one of 27 occupation categories. Overlapping jobs of the same category (1142 jobs) were collapsed and overlapping jobs of different categories (1013 jobs) were split. The resulting durations were weighted by a factor accounting for the number of overlapping jobs. Results Collapsing overlapping jobs within the same category resulted in 3295 jobs (mean 2629 days/job). Splitting overlapping jobs of different categories increased the number to 4239 jobs (mean 2043 days/job), while the total duration in days dropped by 10%. Conclusions We demonstrated that overlapping employment data structures can be harmonized in a systematic and unbiased way, preparing work history data for linkage to several JEMs.</description><subject>Categories</subject><subject>Credit ratings</subject><subject>Data management</subject><subject>Data structures</subject><subject>Employment</subject><subject>employment spells</subject><subject>Epidemiology</subject><subject>Exposure</subject><subject>exposure assessment</subject><subject>job‐exposure matrices (JEMs)</subject><subject>occupational epidemiology</subject><subject>Regional stocks</subject><subject>work history</subject><subject>Workers</subject><issn>0271-3586</issn><issn>1097-0274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNp9kU1PxCAURYnR6Pix8QcoiTuTKo9CKRsTY_yMxo1u3BAszAxjWyp0nIy_XsZRoxtXj4TD4d1chHaBHAEh9FhPXHNEqSz4ChoAkSIjVLBVNEgDspyXxQbajHFCCAAr2DrayIkEKSUfoKcrHRrfunfXjvDMhxc8drH3YY6N7jV2LbadM7ZxvvYjV-HYT42zEc9cP8b-zYZad93irW262s8b2_Y42MoHE7fR2lDX0e58zS30eHH-cHaV3d5fXp-d3mYVE5RngjEwEiqpaUUNJWCHIEhJNLdEQKlzboS06Sx0SYUpclYILjlwLqpyWOb5FjpZervpc2NNlVYIulZdcI0Oc-W1U39vWjdWI_-mZM6ASUiC_aWgCim7a1Xrg1ZASk6VYFLSRBx8fRH869TGXk38NLQplaIUipSAc5mow2-PjzHY4c8OQNSiKbVoSn02leC931v_oN_VJACWwMzVdv6PSp3eXN8tpR91N55T</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Stenehjem, Jo Steinson</creator><creator>Babigumira, Ronnie</creator><creator>Friesen, Melissa C</creator><creator>Grimsrud, Tom Kristian</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Liss Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U7</scope><scope>C1K</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1964-5410</orcidid></search><sort><creationdate>201905</creationdate><title>Harmonizing work history data in epidemiologic studies with overlapping employment records</title><author>Stenehjem, Jo Steinson ; Babigumira, Ronnie ; Friesen, Melissa C ; Grimsrud, Tom Kristian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4725-7441d91c9a2c2d201ef17080a5e0718a35d79ee077a827d634675951557c8f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Categories</topic><topic>Credit ratings</topic><topic>Data management</topic><topic>Data structures</topic><topic>Employment</topic><topic>employment spells</topic><topic>Epidemiology</topic><topic>Exposure</topic><topic>exposure assessment</topic><topic>job‐exposure matrices (JEMs)</topic><topic>occupational epidemiology</topic><topic>Regional stocks</topic><topic>work history</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stenehjem, Jo Steinson</creatorcontrib><creatorcontrib>Babigumira, Ronnie</creatorcontrib><creatorcontrib>Friesen, Melissa C</creatorcontrib><creatorcontrib>Grimsrud, Tom Kristian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of industrial medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stenehjem, Jo Steinson</au><au>Babigumira, Ronnie</au><au>Friesen, Melissa C</au><au>Grimsrud, Tom Kristian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonizing work history data in epidemiologic studies with overlapping employment records</atitle><jtitle>American journal of industrial medicine</jtitle><addtitle>Am J Ind Med</addtitle><date>2019-05</date><risdate>2019</risdate><volume>62</volume><issue>5</issue><spage>422</spage><epage>429</epage><pages>422-429</pages><issn>0271-3586</issn><eissn>1097-0274</eissn><abstract>Background Work history data often require major data management including handling of overlapping jobs to avoid overestimating exposure before linkage to job‐exposure matrices (JEMs) is possible. Methods In a case‐cohort study of 1825 male Norwegian offshore petroleum workers, 3979 jobs were reported (mean duration 2417 days/job; maximum 8 jobs/worker). Each job was assigned to one of 27 occupation categories. Overlapping jobs of the same category (1142 jobs) were collapsed and overlapping jobs of different categories (1013 jobs) were split. The resulting durations were weighted by a factor accounting for the number of overlapping jobs. Results Collapsing overlapping jobs within the same category resulted in 3295 jobs (mean 2629 days/job). Splitting overlapping jobs of different categories increased the number to 4239 jobs (mean 2043 days/job), while the total duration in days dropped by 10%. Conclusions We demonstrated that overlapping employment data structures can be harmonized in a systematic and unbiased way, preparing work history data for linkage to several JEMs.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30919995</pmid><doi>10.1002/ajim.22965</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1964-5410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-3586
ispartof American journal of industrial medicine, 2019-05, Vol.62 (5), p.422-429
issn 0271-3586
1097-0274
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9341491
source Access via Wiley Online Library; NORA - Norwegian Open Research Archives
subjects Categories
Credit ratings
Data management
Data structures
Employment
employment spells
Epidemiology
Exposure
exposure assessment
job‐exposure matrices (JEMs)
occupational epidemiology
Regional stocks
work history
Workers
title Harmonizing work history data in epidemiologic studies with overlapping employment records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonizing%20work%20history%20data%20in%20epidemiologic%20studies%20with%20overlapping%20employment%20records&rft.jtitle=American%20journal%20of%20industrial%20medicine&rft.au=Stenehjem,%20Jo%20Steinson&rft.date=2019-05&rft.volume=62&rft.issue=5&rft.spage=422&rft.epage=429&rft.pages=422-429&rft.issn=0271-3586&rft.eissn=1097-0274&rft_id=info:doi/10.1002/ajim.22965&rft_dat=%3Cproquest_pubme%3E2216441559%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216441559&rft_id=info:pmid/30919995&rfr_iscdi=true