A heterotypic assembly mechanism regulates CHIP E3 ligase activity

CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2022-08, Vol.41 (15), p.e109566-n/a
Hauptverfasser: Das, Aniruddha, Thapa, Pankaj, Santiago, Ulises, Shanmugam, Nilesh, Banasiak, Katarzyna, Dąbrowska, Katarzyna, Nolte, Hendrik, Szulc, Natalia A, Gathungu, Rose M, Cysewski, Dominik, Krüger, Marcus, Dadlez, Michał, Nowotny, Marcin, Camacho, Carlos J, Hoppe, Thorsten, Pokrzywa, Wojciech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page e109566
container_title The EMBO journal
container_volume 41
creator Das, Aniruddha
Thapa, Pankaj
Santiago, Ulises
Shanmugam, Nilesh
Banasiak, Katarzyna
Dąbrowska, Katarzyna
Nolte, Hendrik
Szulc, Natalia A
Gathungu, Rose M
Cysewski, Dominik
Krüger, Marcus
Dadlez, Michał
Nowotny, Marcin
Camacho, Carlos J
Hoppe, Thorsten
Pokrzywa, Wojciech
description CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in Caenorhabditis elegans . Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate S ‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the S ‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation. Synopsis The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism. The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1 UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2 Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via S ‐adenosylhomocysteinase (AHCY‐1) ubiquitylation Graphical Abstract CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in C. elegans lipid metabolism.
doi_str_mv 10.15252/embj.2021109566
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9340540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696784094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</originalsourceid><addsrcrecordid>eNqFkc9rFDEYhoModq3ePcmAl16mfskkmQREaJfVVip60HNIst_sZpkfazJTmf_e1K2tFcRTDnneh_fjJeQlhVMqmGBvsHO7UwaMUtBCykdkQbmEkkEtHpMFMElLTpU-Is9S2gGAUDV9So4qUUvGGVuQ87NiiyPGYZz3wRc2paxs56JDv7V9SF0RcTO1dsRULC8uvxSrqmjDxiYsrB_DdRjn5-RJY9uEL27fY_Lt_err8qK8-vzhcnl2VXpBtSwddw13VSMda2rnvaqsBoWecSsav7aMakGp084J0FzYutEK1lXdIKi1B1Edk3cH735yHa499mO0rdnH0Nk4m8EG8_CnD1uzGa6NrjgIDllwciuIw_cJ02i6kDy2re1xmJJhUlFFJWU36Ou_0N0wxT6flykta8Vzx0zBgfJxSClic1eGgvk1kLkZyNwPlCOv_jziLvB7kQy8PQA_Qovzf4Vm9en84wM_PcRTTvYbjPfF_9npJ4eRra8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696784094</pqid></control><display><type>article</type><title>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Das, Aniruddha ; Thapa, Pankaj ; Santiago, Ulises ; Shanmugam, Nilesh ; Banasiak, Katarzyna ; Dąbrowska, Katarzyna ; Nolte, Hendrik ; Szulc, Natalia A ; Gathungu, Rose M ; Cysewski, Dominik ; Krüger, Marcus ; Dadlez, Michał ; Nowotny, Marcin ; Camacho, Carlos J ; Hoppe, Thorsten ; Pokrzywa, Wojciech</creator><creatorcontrib>Das, Aniruddha ; Thapa, Pankaj ; Santiago, Ulises ; Shanmugam, Nilesh ; Banasiak, Katarzyna ; Dąbrowska, Katarzyna ; Nolte, Hendrik ; Szulc, Natalia A ; Gathungu, Rose M ; Cysewski, Dominik ; Krüger, Marcus ; Dadlez, Michał ; Nowotny, Marcin ; Camacho, Carlos J ; Hoppe, Thorsten ; Pokrzywa, Wojciech</creatorcontrib><description>CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in Caenorhabditis elegans . Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate S ‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the S ‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation. Synopsis The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism. The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1 UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2 Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via S ‐adenosylhomocysteinase (AHCY‐1) ubiquitylation Graphical Abstract CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in C. elegans lipid metabolism.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021109566</identifier><identifier>PMID: 35762422</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosylhomocysteinase ; Adenosylmethionine ; Animals ; Binding ; C. elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; CHIP/STUB1/CHN‐1 ; Computer applications ; Cooperation ; Dimerization ; Domains ; EMBO31 ; EMBO32 ; Enzymes ; Hsc70 protein ; HSP70 Heat-Shock Proteins - metabolism ; Hsp70 protein ; Lipid metabolism ; Lipids ; Metabolism ; Methylation ; Molecular Chaperones - metabolism ; Proteasomes ; Proteomics ; Quality control ; Regulatory mechanisms (biology) ; Selectivity ; Substrates ; Ubiquitin ; Ubiquitin - metabolism ; ubiquitin ligase ; Ubiquitin-conjugating enzyme ; Ubiquitin-Conjugating Enzymes - genetics ; Ubiquitin-Conjugating Enzymes - metabolism ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; UFD‐2</subject><ispartof>The EMBO journal, 2022-08, Vol.41 (15), p.e109566-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</citedby><cites>FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</cites><orcidid>0000-0003-2259-5984 ; 0000-0002-5846-6941 ; 0000-0001-7833-0374 ; 0000-0002-7704-3573 ; 0000-0002-5110-4462 ; 0000-0002-6813-115X ; 0000-0003-1741-8529 ; 0000-0003-1560-5099 ; 0000-0002-2991-3634 ; 0000-0002-4734-9352 ; 0000-0001-6206-0672 ; 0000-0002-1027-9426 ; 0000-0001-5536-1768 ; 0000-0002-5552-2565 ; 0000-0001-8632-0977 ; 0000-0001-8811-5176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340540/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340540/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35762422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Aniruddha</creatorcontrib><creatorcontrib>Thapa, Pankaj</creatorcontrib><creatorcontrib>Santiago, Ulises</creatorcontrib><creatorcontrib>Shanmugam, Nilesh</creatorcontrib><creatorcontrib>Banasiak, Katarzyna</creatorcontrib><creatorcontrib>Dąbrowska, Katarzyna</creatorcontrib><creatorcontrib>Nolte, Hendrik</creatorcontrib><creatorcontrib>Szulc, Natalia A</creatorcontrib><creatorcontrib>Gathungu, Rose M</creatorcontrib><creatorcontrib>Cysewski, Dominik</creatorcontrib><creatorcontrib>Krüger, Marcus</creatorcontrib><creatorcontrib>Dadlez, Michał</creatorcontrib><creatorcontrib>Nowotny, Marcin</creatorcontrib><creatorcontrib>Camacho, Carlos J</creatorcontrib><creatorcontrib>Hoppe, Thorsten</creatorcontrib><creatorcontrib>Pokrzywa, Wojciech</creatorcontrib><title>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in Caenorhabditis elegans . Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate S ‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the S ‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation. Synopsis The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism. The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1 UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2 Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via S ‐adenosylhomocysteinase (AHCY‐1) ubiquitylation Graphical Abstract CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in C. elegans lipid metabolism.</description><subject>Adenosylhomocysteinase</subject><subject>Adenosylmethionine</subject><subject>Animals</subject><subject>Binding</subject><subject>C. elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>CHIP/STUB1/CHN‐1</subject><subject>Computer applications</subject><subject>Cooperation</subject><subject>Dimerization</subject><subject>Domains</subject><subject>EMBO31</subject><subject>EMBO32</subject><subject>Enzymes</subject><subject>Hsc70 protein</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Hsp70 protein</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Methylation</subject><subject>Molecular Chaperones - metabolism</subject><subject>Proteasomes</subject><subject>Proteomics</subject><subject>Quality control</subject><subject>Regulatory mechanisms (biology)</subject><subject>Selectivity</subject><subject>Substrates</subject><subject>Ubiquitin</subject><subject>Ubiquitin - metabolism</subject><subject>ubiquitin ligase</subject><subject>Ubiquitin-conjugating enzyme</subject><subject>Ubiquitin-Conjugating Enzymes - genetics</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>UFD‐2</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEYhoModq3ePcmAl16mfskkmQREaJfVVip60HNIst_sZpkfazJTmf_e1K2tFcRTDnneh_fjJeQlhVMqmGBvsHO7UwaMUtBCykdkQbmEkkEtHpMFMElLTpU-Is9S2gGAUDV9So4qUUvGGVuQ87NiiyPGYZz3wRc2paxs56JDv7V9SF0RcTO1dsRULC8uvxSrqmjDxiYsrB_DdRjn5-RJY9uEL27fY_Lt_err8qK8-vzhcnl2VXpBtSwddw13VSMda2rnvaqsBoWecSsav7aMakGp084J0FzYutEK1lXdIKi1B1Edk3cH735yHa499mO0rdnH0Nk4m8EG8_CnD1uzGa6NrjgIDllwciuIw_cJ02i6kDy2re1xmJJhUlFFJWU36Ou_0N0wxT6flykta8Vzx0zBgfJxSClic1eGgvk1kLkZyNwPlCOv_jziLvB7kQy8PQA_Qovzf4Vm9en84wM_PcRTTvYbjPfF_9npJ4eRra8</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Das, Aniruddha</creator><creator>Thapa, Pankaj</creator><creator>Santiago, Ulises</creator><creator>Shanmugam, Nilesh</creator><creator>Banasiak, Katarzyna</creator><creator>Dąbrowska, Katarzyna</creator><creator>Nolte, Hendrik</creator><creator>Szulc, Natalia A</creator><creator>Gathungu, Rose M</creator><creator>Cysewski, Dominik</creator><creator>Krüger, Marcus</creator><creator>Dadlez, Michał</creator><creator>Nowotny, Marcin</creator><creator>Camacho, Carlos J</creator><creator>Hoppe, Thorsten</creator><creator>Pokrzywa, Wojciech</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2259-5984</orcidid><orcidid>https://orcid.org/0000-0002-5846-6941</orcidid><orcidid>https://orcid.org/0000-0001-7833-0374</orcidid><orcidid>https://orcid.org/0000-0002-7704-3573</orcidid><orcidid>https://orcid.org/0000-0002-5110-4462</orcidid><orcidid>https://orcid.org/0000-0002-6813-115X</orcidid><orcidid>https://orcid.org/0000-0003-1741-8529</orcidid><orcidid>https://orcid.org/0000-0003-1560-5099</orcidid><orcidid>https://orcid.org/0000-0002-2991-3634</orcidid><orcidid>https://orcid.org/0000-0002-4734-9352</orcidid><orcidid>https://orcid.org/0000-0001-6206-0672</orcidid><orcidid>https://orcid.org/0000-0002-1027-9426</orcidid><orcidid>https://orcid.org/0000-0001-5536-1768</orcidid><orcidid>https://orcid.org/0000-0002-5552-2565</orcidid><orcidid>https://orcid.org/0000-0001-8632-0977</orcidid><orcidid>https://orcid.org/0000-0001-8811-5176</orcidid></search><sort><creationdate>20220801</creationdate><title>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</title><author>Das, Aniruddha ; Thapa, Pankaj ; Santiago, Ulises ; Shanmugam, Nilesh ; Banasiak, Katarzyna ; Dąbrowska, Katarzyna ; Nolte, Hendrik ; Szulc, Natalia A ; Gathungu, Rose M ; Cysewski, Dominik ; Krüger, Marcus ; Dadlez, Michał ; Nowotny, Marcin ; Camacho, Carlos J ; Hoppe, Thorsten ; Pokrzywa, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosylhomocysteinase</topic><topic>Adenosylmethionine</topic><topic>Animals</topic><topic>Binding</topic><topic>C. elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>CHIP/STUB1/CHN‐1</topic><topic>Computer applications</topic><topic>Cooperation</topic><topic>Dimerization</topic><topic>Domains</topic><topic>EMBO31</topic><topic>EMBO32</topic><topic>Enzymes</topic><topic>Hsc70 protein</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Hsp70 protein</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Methylation</topic><topic>Molecular Chaperones - metabolism</topic><topic>Proteasomes</topic><topic>Proteomics</topic><topic>Quality control</topic><topic>Regulatory mechanisms (biology)</topic><topic>Selectivity</topic><topic>Substrates</topic><topic>Ubiquitin</topic><topic>Ubiquitin - metabolism</topic><topic>ubiquitin ligase</topic><topic>Ubiquitin-conjugating enzyme</topic><topic>Ubiquitin-Conjugating Enzymes - genetics</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>UFD‐2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Aniruddha</creatorcontrib><creatorcontrib>Thapa, Pankaj</creatorcontrib><creatorcontrib>Santiago, Ulises</creatorcontrib><creatorcontrib>Shanmugam, Nilesh</creatorcontrib><creatorcontrib>Banasiak, Katarzyna</creatorcontrib><creatorcontrib>Dąbrowska, Katarzyna</creatorcontrib><creatorcontrib>Nolte, Hendrik</creatorcontrib><creatorcontrib>Szulc, Natalia A</creatorcontrib><creatorcontrib>Gathungu, Rose M</creatorcontrib><creatorcontrib>Cysewski, Dominik</creatorcontrib><creatorcontrib>Krüger, Marcus</creatorcontrib><creatorcontrib>Dadlez, Michał</creatorcontrib><creatorcontrib>Nowotny, Marcin</creatorcontrib><creatorcontrib>Camacho, Carlos J</creatorcontrib><creatorcontrib>Hoppe, Thorsten</creatorcontrib><creatorcontrib>Pokrzywa, Wojciech</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Aniruddha</au><au>Thapa, Pankaj</au><au>Santiago, Ulises</au><au>Shanmugam, Nilesh</au><au>Banasiak, Katarzyna</au><au>Dąbrowska, Katarzyna</au><au>Nolte, Hendrik</au><au>Szulc, Natalia A</au><au>Gathungu, Rose M</au><au>Cysewski, Dominik</au><au>Krüger, Marcus</au><au>Dadlez, Michał</au><au>Nowotny, Marcin</au><au>Camacho, Carlos J</au><au>Hoppe, Thorsten</au><au>Pokrzywa, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>41</volume><issue>15</issue><spage>e109566</spage><epage>n/a</epage><pages>e109566-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in Caenorhabditis elegans . Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate S ‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the S ‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation. Synopsis The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism. The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1 UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2 Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via S ‐adenosylhomocysteinase (AHCY‐1) ubiquitylation Graphical Abstract CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in C. elegans lipid metabolism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35762422</pmid><doi>10.15252/embj.2021109566</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-2259-5984</orcidid><orcidid>https://orcid.org/0000-0002-5846-6941</orcidid><orcidid>https://orcid.org/0000-0001-7833-0374</orcidid><orcidid>https://orcid.org/0000-0002-7704-3573</orcidid><orcidid>https://orcid.org/0000-0002-5110-4462</orcidid><orcidid>https://orcid.org/0000-0002-6813-115X</orcidid><orcidid>https://orcid.org/0000-0003-1741-8529</orcidid><orcidid>https://orcid.org/0000-0003-1560-5099</orcidid><orcidid>https://orcid.org/0000-0002-2991-3634</orcidid><orcidid>https://orcid.org/0000-0002-4734-9352</orcidid><orcidid>https://orcid.org/0000-0001-6206-0672</orcidid><orcidid>https://orcid.org/0000-0002-1027-9426</orcidid><orcidid>https://orcid.org/0000-0001-5536-1768</orcidid><orcidid>https://orcid.org/0000-0002-5552-2565</orcidid><orcidid>https://orcid.org/0000-0001-8632-0977</orcidid><orcidid>https://orcid.org/0000-0001-8811-5176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2022-08, Vol.41 (15), p.e109566-n/a
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9340540
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects Adenosylhomocysteinase
Adenosylmethionine
Animals
Binding
C. elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
CHIP/STUB1/CHN‐1
Computer applications
Cooperation
Dimerization
Domains
EMBO31
EMBO32
Enzymes
Hsc70 protein
HSP70 Heat-Shock Proteins - metabolism
Hsp70 protein
Lipid metabolism
Lipids
Metabolism
Methylation
Molecular Chaperones - metabolism
Proteasomes
Proteomics
Quality control
Regulatory mechanisms (biology)
Selectivity
Substrates
Ubiquitin
Ubiquitin - metabolism
ubiquitin ligase
Ubiquitin-conjugating enzyme
Ubiquitin-Conjugating Enzymes - genetics
Ubiquitin-Conjugating Enzymes - metabolism
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
UFD‐2
title A heterotypic assembly mechanism regulates CHIP E3 ligase activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20heterotypic%20assembly%20mechanism%20regulates%20CHIP%20E3%20ligase%20activity&rft.jtitle=The%20EMBO%20journal&rft.au=Das,%20Aniruddha&rft.date=2022-08-01&rft.volume=41&rft.issue=15&rft.spage=e109566&rft.epage=n/a&rft.pages=e109566-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021109566&rft_dat=%3Cproquest_pubme%3E2696784094%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696784094&rft_id=info:pmid/35762422&rfr_iscdi=true