A heterotypic assembly mechanism regulates CHIP E3 ligase activity
CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high p...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2022-08, Vol.41 (15), p.e109566-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | e109566 |
container_title | The EMBO journal |
container_volume | 41 |
creator | Das, Aniruddha Thapa, Pankaj Santiago, Ulises Shanmugam, Nilesh Banasiak, Katarzyna Dąbrowska, Katarzyna Nolte, Hendrik Szulc, Natalia A Gathungu, Rose M Cysewski, Dominik Krüger, Marcus Dadlez, Michał Nowotny, Marcin Camacho, Carlos J Hoppe, Thorsten Pokrzywa, Wojciech |
description | CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in
Caenorhabditis elegans
. Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate
S
‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the
S
‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation.
Synopsis
The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism.
The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1
UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity
HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2
Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via
S
‐adenosylhomocysteinase (AHCY‐1) ubiquitylation
Graphical Abstract
CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in
C. elegans
lipid metabolism. |
doi_str_mv | 10.15252/embj.2021109566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9340540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696784094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</originalsourceid><addsrcrecordid>eNqFkc9rFDEYhoModq3ePcmAl16mfskkmQREaJfVVip60HNIst_sZpkfazJTmf_e1K2tFcRTDnneh_fjJeQlhVMqmGBvsHO7UwaMUtBCykdkQbmEkkEtHpMFMElLTpU-Is9S2gGAUDV9So4qUUvGGVuQ87NiiyPGYZz3wRc2paxs56JDv7V9SF0RcTO1dsRULC8uvxSrqmjDxiYsrB_DdRjn5-RJY9uEL27fY_Lt_err8qK8-vzhcnl2VXpBtSwddw13VSMda2rnvaqsBoWecSsav7aMakGp084J0FzYutEK1lXdIKi1B1Edk3cH735yHa499mO0rdnH0Nk4m8EG8_CnD1uzGa6NrjgIDllwciuIw_cJ02i6kDy2re1xmJJhUlFFJWU36Ou_0N0wxT6flykta8Vzx0zBgfJxSClic1eGgvk1kLkZyNwPlCOv_jziLvB7kQy8PQA_Qovzf4Vm9en84wM_PcRTTvYbjPfF_9npJ4eRra8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696784094</pqid></control><display><type>article</type><title>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Das, Aniruddha ; Thapa, Pankaj ; Santiago, Ulises ; Shanmugam, Nilesh ; Banasiak, Katarzyna ; Dąbrowska, Katarzyna ; Nolte, Hendrik ; Szulc, Natalia A ; Gathungu, Rose M ; Cysewski, Dominik ; Krüger, Marcus ; Dadlez, Michał ; Nowotny, Marcin ; Camacho, Carlos J ; Hoppe, Thorsten ; Pokrzywa, Wojciech</creator><creatorcontrib>Das, Aniruddha ; Thapa, Pankaj ; Santiago, Ulises ; Shanmugam, Nilesh ; Banasiak, Katarzyna ; Dąbrowska, Katarzyna ; Nolte, Hendrik ; Szulc, Natalia A ; Gathungu, Rose M ; Cysewski, Dominik ; Krüger, Marcus ; Dadlez, Michał ; Nowotny, Marcin ; Camacho, Carlos J ; Hoppe, Thorsten ; Pokrzywa, Wojciech</creatorcontrib><description>CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in
Caenorhabditis elegans
. Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate
S
‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the
S
‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation.
Synopsis
The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism.
The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1
UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity
HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2
Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via
S
‐adenosylhomocysteinase (AHCY‐1) ubiquitylation
Graphical Abstract
CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in
C. elegans
lipid metabolism.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021109566</identifier><identifier>PMID: 35762422</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosylhomocysteinase ; Adenosylmethionine ; Animals ; Binding ; C. elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; CHIP/STUB1/CHN‐1 ; Computer applications ; Cooperation ; Dimerization ; Domains ; EMBO31 ; EMBO32 ; Enzymes ; Hsc70 protein ; HSP70 Heat-Shock Proteins - metabolism ; Hsp70 protein ; Lipid metabolism ; Lipids ; Metabolism ; Methylation ; Molecular Chaperones - metabolism ; Proteasomes ; Proteomics ; Quality control ; Regulatory mechanisms (biology) ; Selectivity ; Substrates ; Ubiquitin ; Ubiquitin - metabolism ; ubiquitin ligase ; Ubiquitin-conjugating enzyme ; Ubiquitin-Conjugating Enzymes - genetics ; Ubiquitin-Conjugating Enzymes - metabolism ; Ubiquitin-protein ligase ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination ; UFD‐2</subject><ispartof>The EMBO journal, 2022-08, Vol.41 (15), p.e109566-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</citedby><cites>FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</cites><orcidid>0000-0003-2259-5984 ; 0000-0002-5846-6941 ; 0000-0001-7833-0374 ; 0000-0002-7704-3573 ; 0000-0002-5110-4462 ; 0000-0002-6813-115X ; 0000-0003-1741-8529 ; 0000-0003-1560-5099 ; 0000-0002-2991-3634 ; 0000-0002-4734-9352 ; 0000-0001-6206-0672 ; 0000-0002-1027-9426 ; 0000-0001-5536-1768 ; 0000-0002-5552-2565 ; 0000-0001-8632-0977 ; 0000-0001-8811-5176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340540/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9340540/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35762422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Aniruddha</creatorcontrib><creatorcontrib>Thapa, Pankaj</creatorcontrib><creatorcontrib>Santiago, Ulises</creatorcontrib><creatorcontrib>Shanmugam, Nilesh</creatorcontrib><creatorcontrib>Banasiak, Katarzyna</creatorcontrib><creatorcontrib>Dąbrowska, Katarzyna</creatorcontrib><creatorcontrib>Nolte, Hendrik</creatorcontrib><creatorcontrib>Szulc, Natalia A</creatorcontrib><creatorcontrib>Gathungu, Rose M</creatorcontrib><creatorcontrib>Cysewski, Dominik</creatorcontrib><creatorcontrib>Krüger, Marcus</creatorcontrib><creatorcontrib>Dadlez, Michał</creatorcontrib><creatorcontrib>Nowotny, Marcin</creatorcontrib><creatorcontrib>Camacho, Carlos J</creatorcontrib><creatorcontrib>Hoppe, Thorsten</creatorcontrib><creatorcontrib>Pokrzywa, Wojciech</creatorcontrib><title>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in
Caenorhabditis elegans
. Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate
S
‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the
S
‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation.
Synopsis
The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism.
The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1
UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity
HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2
Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via
S
‐adenosylhomocysteinase (AHCY‐1) ubiquitylation
Graphical Abstract
CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in
C. elegans
lipid metabolism.</description><subject>Adenosylhomocysteinase</subject><subject>Adenosylmethionine</subject><subject>Animals</subject><subject>Binding</subject><subject>C. elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>CHIP/STUB1/CHN‐1</subject><subject>Computer applications</subject><subject>Cooperation</subject><subject>Dimerization</subject><subject>Domains</subject><subject>EMBO31</subject><subject>EMBO32</subject><subject>Enzymes</subject><subject>Hsc70 protein</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Hsp70 protein</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Methylation</subject><subject>Molecular Chaperones - metabolism</subject><subject>Proteasomes</subject><subject>Proteomics</subject><subject>Quality control</subject><subject>Regulatory mechanisms (biology)</subject><subject>Selectivity</subject><subject>Substrates</subject><subject>Ubiquitin</subject><subject>Ubiquitin - metabolism</subject><subject>ubiquitin ligase</subject><subject>Ubiquitin-conjugating enzyme</subject><subject>Ubiquitin-Conjugating Enzymes - genetics</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><subject>Ubiquitin-protein ligase</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination</subject><subject>UFD‐2</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEYhoModq3ePcmAl16mfskkmQREaJfVVip60HNIst_sZpkfazJTmf_e1K2tFcRTDnneh_fjJeQlhVMqmGBvsHO7UwaMUtBCykdkQbmEkkEtHpMFMElLTpU-Is9S2gGAUDV9So4qUUvGGVuQ87NiiyPGYZz3wRc2paxs56JDv7V9SF0RcTO1dsRULC8uvxSrqmjDxiYsrB_DdRjn5-RJY9uEL27fY_Lt_err8qK8-vzhcnl2VXpBtSwddw13VSMda2rnvaqsBoWecSsav7aMakGp084J0FzYutEK1lXdIKi1B1Edk3cH735yHa499mO0rdnH0Nk4m8EG8_CnD1uzGa6NrjgIDllwciuIw_cJ02i6kDy2re1xmJJhUlFFJWU36Ou_0N0wxT6flykta8Vzx0zBgfJxSClic1eGgvk1kLkZyNwPlCOv_jziLvB7kQy8PQA_Qovzf4Vm9en84wM_PcRTTvYbjPfF_9npJ4eRra8</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Das, Aniruddha</creator><creator>Thapa, Pankaj</creator><creator>Santiago, Ulises</creator><creator>Shanmugam, Nilesh</creator><creator>Banasiak, Katarzyna</creator><creator>Dąbrowska, Katarzyna</creator><creator>Nolte, Hendrik</creator><creator>Szulc, Natalia A</creator><creator>Gathungu, Rose M</creator><creator>Cysewski, Dominik</creator><creator>Krüger, Marcus</creator><creator>Dadlez, Michał</creator><creator>Nowotny, Marcin</creator><creator>Camacho, Carlos J</creator><creator>Hoppe, Thorsten</creator><creator>Pokrzywa, Wojciech</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2259-5984</orcidid><orcidid>https://orcid.org/0000-0002-5846-6941</orcidid><orcidid>https://orcid.org/0000-0001-7833-0374</orcidid><orcidid>https://orcid.org/0000-0002-7704-3573</orcidid><orcidid>https://orcid.org/0000-0002-5110-4462</orcidid><orcidid>https://orcid.org/0000-0002-6813-115X</orcidid><orcidid>https://orcid.org/0000-0003-1741-8529</orcidid><orcidid>https://orcid.org/0000-0003-1560-5099</orcidid><orcidid>https://orcid.org/0000-0002-2991-3634</orcidid><orcidid>https://orcid.org/0000-0002-4734-9352</orcidid><orcidid>https://orcid.org/0000-0001-6206-0672</orcidid><orcidid>https://orcid.org/0000-0002-1027-9426</orcidid><orcidid>https://orcid.org/0000-0001-5536-1768</orcidid><orcidid>https://orcid.org/0000-0002-5552-2565</orcidid><orcidid>https://orcid.org/0000-0001-8632-0977</orcidid><orcidid>https://orcid.org/0000-0001-8811-5176</orcidid></search><sort><creationdate>20220801</creationdate><title>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</title><author>Das, Aniruddha ; Thapa, Pankaj ; Santiago, Ulises ; Shanmugam, Nilesh ; Banasiak, Katarzyna ; Dąbrowska, Katarzyna ; Nolte, Hendrik ; Szulc, Natalia A ; Gathungu, Rose M ; Cysewski, Dominik ; Krüger, Marcus ; Dadlez, Michał ; Nowotny, Marcin ; Camacho, Carlos J ; Hoppe, Thorsten ; Pokrzywa, Wojciech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5196-b4bf4b3f6b2f7bcc83a908ec24a5fcda219511b9bb50945a7f980d37fe08dc053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosylhomocysteinase</topic><topic>Adenosylmethionine</topic><topic>Animals</topic><topic>Binding</topic><topic>C. elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>CHIP/STUB1/CHN‐1</topic><topic>Computer applications</topic><topic>Cooperation</topic><topic>Dimerization</topic><topic>Domains</topic><topic>EMBO31</topic><topic>EMBO32</topic><topic>Enzymes</topic><topic>Hsc70 protein</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Hsp70 protein</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Methylation</topic><topic>Molecular Chaperones - metabolism</topic><topic>Proteasomes</topic><topic>Proteomics</topic><topic>Quality control</topic><topic>Regulatory mechanisms (biology)</topic><topic>Selectivity</topic><topic>Substrates</topic><topic>Ubiquitin</topic><topic>Ubiquitin - metabolism</topic><topic>ubiquitin ligase</topic><topic>Ubiquitin-conjugating enzyme</topic><topic>Ubiquitin-Conjugating Enzymes - genetics</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><topic>Ubiquitin-protein ligase</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination</topic><topic>UFD‐2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Aniruddha</creatorcontrib><creatorcontrib>Thapa, Pankaj</creatorcontrib><creatorcontrib>Santiago, Ulises</creatorcontrib><creatorcontrib>Shanmugam, Nilesh</creatorcontrib><creatorcontrib>Banasiak, Katarzyna</creatorcontrib><creatorcontrib>Dąbrowska, Katarzyna</creatorcontrib><creatorcontrib>Nolte, Hendrik</creatorcontrib><creatorcontrib>Szulc, Natalia A</creatorcontrib><creatorcontrib>Gathungu, Rose M</creatorcontrib><creatorcontrib>Cysewski, Dominik</creatorcontrib><creatorcontrib>Krüger, Marcus</creatorcontrib><creatorcontrib>Dadlez, Michał</creatorcontrib><creatorcontrib>Nowotny, Marcin</creatorcontrib><creatorcontrib>Camacho, Carlos J</creatorcontrib><creatorcontrib>Hoppe, Thorsten</creatorcontrib><creatorcontrib>Pokrzywa, Wojciech</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Aniruddha</au><au>Thapa, Pankaj</au><au>Santiago, Ulises</au><au>Shanmugam, Nilesh</au><au>Banasiak, Katarzyna</au><au>Dąbrowska, Katarzyna</au><au>Nolte, Hendrik</au><au>Szulc, Natalia A</au><au>Gathungu, Rose M</au><au>Cysewski, Dominik</au><au>Krüger, Marcus</au><au>Dadlez, Michał</au><au>Nowotny, Marcin</au><au>Camacho, Carlos J</au><au>Hoppe, Thorsten</au><au>Pokrzywa, Wojciech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A heterotypic assembly mechanism regulates CHIP E3 ligase activity</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>41</volume><issue>15</issue><spage>e109566</spage><epage>n/a</epage><pages>e109566-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>CHIP (C‐terminus of Hsc70‐interacting protein) and its worm ortholog CHN‐1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin‐proteasome system (UPS). CHN‐1 can cooperate with UFD‐2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN‐1–UFD‐2 complex in
Caenorhabditis elegans
. Our data show that UFD‐2 binding promotes the cooperation between CHN‐1 and ubiquitin‐conjugating E2 enzymes by stabilizing the CHN‐1 U‐box dimer. However, HSP70/HSP‐1 chaperone outcompetes UFD‐2 for CHN‐1 binding, thereby promoting a shift to the autoinhibited CHN‐1 state by acting on a conserved residue in its U‐box domain. The interaction with UFD‐2 enables CHN‐1 to efficiently ubiquitylate and regulate
S
‐adenosylhomocysteinase (AHCY‐1), a key enzyme in the
S
‐adenosylmethionine (SAM) regeneration cycle, which is essential for SAM‐dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN‐1 and UFD‐2 in substrate ubiquitylation.
Synopsis
The regulation of CHIP quality control ubiquitin ligase activity and its substrate selectivity is largely unclear. Here, biochemical, computational, proteomic, and lipidomic data unravel the regulatory mechanism of CHIP processivity, and reveal its role in lipid metabolism.
The E3 ligase UFD‐2 stimulates the ubiquitylation activity of CHIP/CHN‐1
UFD‐2 binding promotes dimerization of the CHIP/CHN‐1 U‐box domains and E2 enzyme discharging capacity
HSP70/HSP‐1, by latching the U‐box and TPR domains, stabilizes the autoinhibitory state of CHIP/CHN‐1, thus limiting its interactions with E2s and UFD‐2
Assembly with UFD‐2 enables CHIP/CHN‐1 to regulate lipid metabolism via
S
‐adenosylhomocysteinase (AHCY‐1) ubiquitylation
Graphical Abstract
CHIP/CHN‐1 ubiquitylation processivity is controlled by differential association with UFD‐2 E3 ligase and HSP70/HSP‐1 chaperone, and is involved in
C. elegans
lipid metabolism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35762422</pmid><doi>10.15252/embj.2021109566</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-2259-5984</orcidid><orcidid>https://orcid.org/0000-0002-5846-6941</orcidid><orcidid>https://orcid.org/0000-0001-7833-0374</orcidid><orcidid>https://orcid.org/0000-0002-7704-3573</orcidid><orcidid>https://orcid.org/0000-0002-5110-4462</orcidid><orcidid>https://orcid.org/0000-0002-6813-115X</orcidid><orcidid>https://orcid.org/0000-0003-1741-8529</orcidid><orcidid>https://orcid.org/0000-0003-1560-5099</orcidid><orcidid>https://orcid.org/0000-0002-2991-3634</orcidid><orcidid>https://orcid.org/0000-0002-4734-9352</orcidid><orcidid>https://orcid.org/0000-0001-6206-0672</orcidid><orcidid>https://orcid.org/0000-0002-1027-9426</orcidid><orcidid>https://orcid.org/0000-0001-5536-1768</orcidid><orcidid>https://orcid.org/0000-0002-5552-2565</orcidid><orcidid>https://orcid.org/0000-0001-8632-0977</orcidid><orcidid>https://orcid.org/0000-0001-8811-5176</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2022-08, Vol.41 (15), p.e109566-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9340540 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | Adenosylhomocysteinase Adenosylmethionine Animals Binding C. elegans Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism CHIP/STUB1/CHN‐1 Computer applications Cooperation Dimerization Domains EMBO31 EMBO32 Enzymes Hsc70 protein HSP70 Heat-Shock Proteins - metabolism Hsp70 protein Lipid metabolism Lipids Metabolism Methylation Molecular Chaperones - metabolism Proteasomes Proteomics Quality control Regulatory mechanisms (biology) Selectivity Substrates Ubiquitin Ubiquitin - metabolism ubiquitin ligase Ubiquitin-conjugating enzyme Ubiquitin-Conjugating Enzymes - genetics Ubiquitin-Conjugating Enzymes - metabolism Ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism Ubiquitination UFD‐2 |
title | A heterotypic assembly mechanism regulates CHIP E3 ligase activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20heterotypic%20assembly%20mechanism%20regulates%20CHIP%20E3%20ligase%20activity&rft.jtitle=The%20EMBO%20journal&rft.au=Das,%20Aniruddha&rft.date=2022-08-01&rft.volume=41&rft.issue=15&rft.spage=e109566&rft.epage=n/a&rft.pages=e109566-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021109566&rft_dat=%3Cproquest_pubme%3E2696784094%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696784094&rft_id=info:pmid/35762422&rfr_iscdi=true |