Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles

The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2022-07, Vol.8 (30), p.eabn8440-eabn8440
Hauptverfasser: Yang, Yang, Zhang, Lin, Jin, Ke, He, Meihang, Wei, Wei, Chen, Xuejiao, Yang, Qingrui, Wang, Yanyan, Pang, Wei, Ren, Xiubao, Duan, Xuexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page eabn8440
container_issue 30
container_start_page eabn8440
container_title Science advances
container_volume 8
creator Yang, Yang
Zhang, Lin
Jin, Ke
He, Meihang
Wei, Wei
Chen, Xuejiao
Yang, Qingrui
Wang, Yanyan
Pang, Wei
Ren, Xiubao
Duan, Xuexin
description The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the concentration of samples is formed by acoustic waves and streams that are triggered and stabilized by a gigahertz bulk acoustic resonator and microfluidics, respectively. By combining a specially designed arc-shaped resonator and lateral flow, the in situ enrichment, focusing, displacement, and continuous size-based separation of nanoparticles were achieved, with the ability to capture 30-nm polystyrene nanoparticles and continuously focus 150-nm polystyrene nanoparticles. Furthermore, exosome separation was also demonstrated. This technology overcomes the limitation of continuously manipulating particles under 200 nm and has the potential to be useful for a wide range of applications in chemistry, life sciences, and medicine. Virtual channels consisting of microscale acoustic streaming vortices enable the manipulation of nanoparticles smaller than 200 nm.
doi_str_mv 10.1126/sciadv.abn8440
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696865570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-1fb2c4830602dda46e8879ac6503f66bb67e511ed74cd94735e8aa8a79848bee3</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhkVoyC7JXnPWsRdvJOvTl0JZ2qQQyKHNLSDG8jirYktbyV7ov4_DLqU5zQzz8szHS8gtZ1vOa31XfIDuuIU2WinZBVnXwqiqVtJ--i9fkU0pvxljXGqteHNFVkI1THHTrMnLTxz6Cjo4TOGI9BjyNMNAx-Bz8nuIEQfap0x9ilOIc5oLxZiD348YJwqxowUPkGEKKdLU0wgxLfUU_IDlhlz2MBTcnOM1ef7-7dfuoXp8uv-x-_pYeSnEVPG-rb20gmlWdx1IjdaaBrxWTPRat602qDjHzkjfNdIIhRbAgmmstC2iuCZfTtzD3I7Y-WW1DIM75DBC_usSBPexE8Pevaaja4QwRpkF8PkMyOnPjGVyYygehwEiLie7WjfaaqUMW6Tbk3R5UCkZ-39jOHPvrriTK-7singDAeuD9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696865570</pqid></control><display><type>article</type><title>Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Yang, Yang ; Zhang, Lin ; Jin, Ke ; He, Meihang ; Wei, Wei ; Chen, Xuejiao ; Yang, Qingrui ; Wang, Yanyan ; Pang, Wei ; Ren, Xiubao ; Duan, Xuexin</creator><creatorcontrib>Yang, Yang ; Zhang, Lin ; Jin, Ke ; He, Meihang ; Wei, Wei ; Chen, Xuejiao ; Yang, Qingrui ; Wang, Yanyan ; Pang, Wei ; Ren, Xiubao ; Duan, Xuexin</creatorcontrib><description>The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the concentration of samples is formed by acoustic waves and streams that are triggered and stabilized by a gigahertz bulk acoustic resonator and microfluidics, respectively. By combining a specially designed arc-shaped resonator and lateral flow, the in situ enrichment, focusing, displacement, and continuous size-based separation of nanoparticles were achieved, with the ability to capture 30-nm polystyrene nanoparticles and continuously focus 150-nm polystyrene nanoparticles. Furthermore, exosome separation was also demonstrated. This technology overcomes the limitation of continuously manipulating particles under 200 nm and has the potential to be useful for a wide range of applications in chemistry, life sciences, and medicine. Virtual channels consisting of microscale acoustic streaming vortices enable the manipulation of nanoparticles smaller than 200 nm.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abn8440</identifier><identifier>PMID: 35905179</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Applied Physics ; Applied Sciences and Engineering ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2022-07, Vol.8 (30), p.eabn8440-eabn8440</ispartof><rights>Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-1fb2c4830602dda46e8879ac6503f66bb67e511ed74cd94735e8aa8a79848bee3</citedby><cites>FETCH-LOGICAL-c433t-1fb2c4830602dda46e8879ac6503f66bb67e511ed74cd94735e8aa8a79848bee3</cites><orcidid>0000-0002-9888-9850 ; 0000-0002-5313-3654 ; 0000-0002-7550-3951 ; 0000-0003-4235-4897 ; 0000-0003-0463-8549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Jin, Ke</creatorcontrib><creatorcontrib>He, Meihang</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Chen, Xuejiao</creatorcontrib><creatorcontrib>Yang, Qingrui</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Ren, Xiubao</creatorcontrib><creatorcontrib>Duan, Xuexin</creatorcontrib><title>Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles</title><title>Science advances</title><description>The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the concentration of samples is formed by acoustic waves and streams that are triggered and stabilized by a gigahertz bulk acoustic resonator and microfluidics, respectively. By combining a specially designed arc-shaped resonator and lateral flow, the in situ enrichment, focusing, displacement, and continuous size-based separation of nanoparticles were achieved, with the ability to capture 30-nm polystyrene nanoparticles and continuously focus 150-nm polystyrene nanoparticles. Furthermore, exosome separation was also demonstrated. This technology overcomes the limitation of continuously manipulating particles under 200 nm and has the potential to be useful for a wide range of applications in chemistry, life sciences, and medicine. Virtual channels consisting of microscale acoustic streaming vortices enable the manipulation of nanoparticles smaller than 200 nm.</description><subject>Applied Physics</subject><subject>Applied Sciences and Engineering</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkU1r3DAQhkVoyC7JXnPWsRdvJOvTl0JZ2qQQyKHNLSDG8jirYktbyV7ov4_DLqU5zQzz8szHS8gtZ1vOa31XfIDuuIU2WinZBVnXwqiqVtJ--i9fkU0pvxljXGqteHNFVkI1THHTrMnLTxz6Cjo4TOGI9BjyNMNAx-Bz8nuIEQfap0x9ilOIc5oLxZiD348YJwqxowUPkGEKKdLU0wgxLfUU_IDlhlz2MBTcnOM1ef7-7dfuoXp8uv-x-_pYeSnEVPG-rb20gmlWdx1IjdaaBrxWTPRat602qDjHzkjfNdIIhRbAgmmstC2iuCZfTtzD3I7Y-WW1DIM75DBC_usSBPexE8Pevaaja4QwRpkF8PkMyOnPjGVyYygehwEiLie7WjfaaqUMW6Tbk3R5UCkZ-39jOHPvrriTK-7singDAeuD9A</recordid><startdate>20220729</startdate><enddate>20220729</enddate><creator>Yang, Yang</creator><creator>Zhang, Lin</creator><creator>Jin, Ke</creator><creator>He, Meihang</creator><creator>Wei, Wei</creator><creator>Chen, Xuejiao</creator><creator>Yang, Qingrui</creator><creator>Wang, Yanyan</creator><creator>Pang, Wei</creator><creator>Ren, Xiubao</creator><creator>Duan, Xuexin</creator><general>American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9888-9850</orcidid><orcidid>https://orcid.org/0000-0002-5313-3654</orcidid><orcidid>https://orcid.org/0000-0002-7550-3951</orcidid><orcidid>https://orcid.org/0000-0003-4235-4897</orcidid><orcidid>https://orcid.org/0000-0003-0463-8549</orcidid></search><sort><creationdate>20220729</creationdate><title>Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles</title><author>Yang, Yang ; Zhang, Lin ; Jin, Ke ; He, Meihang ; Wei, Wei ; Chen, Xuejiao ; Yang, Qingrui ; Wang, Yanyan ; Pang, Wei ; Ren, Xiubao ; Duan, Xuexin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-1fb2c4830602dda46e8879ac6503f66bb67e511ed74cd94735e8aa8a79848bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied Physics</topic><topic>Applied Sciences and Engineering</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Jin, Ke</creatorcontrib><creatorcontrib>He, Meihang</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><creatorcontrib>Chen, Xuejiao</creatorcontrib><creatorcontrib>Yang, Qingrui</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Ren, Xiubao</creatorcontrib><creatorcontrib>Duan, Xuexin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Zhang, Lin</au><au>Jin, Ke</au><au>He, Meihang</au><au>Wei, Wei</au><au>Chen, Xuejiao</au><au>Yang, Qingrui</au><au>Wang, Yanyan</au><au>Pang, Wei</au><au>Ren, Xiubao</au><au>Duan, Xuexin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles</atitle><jtitle>Science advances</jtitle><date>2022-07-29</date><risdate>2022</risdate><volume>8</volume><issue>30</issue><spage>eabn8440</spage><epage>eabn8440</epage><pages>eabn8440-eabn8440</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The transport, enrichment, and purification of nanoparticles are fundamental activities in the fields of biology, chemistry, material science, and medicine. Here, we demonstrate an approach for manipulating nanospecimens in which a virtual channel with a diameter that can be spontaneously self-adjusted from dozens to a few micrometers based on the concentration of samples is formed by acoustic waves and streams that are triggered and stabilized by a gigahertz bulk acoustic resonator and microfluidics, respectively. By combining a specially designed arc-shaped resonator and lateral flow, the in situ enrichment, focusing, displacement, and continuous size-based separation of nanoparticles were achieved, with the ability to capture 30-nm polystyrene nanoparticles and continuously focus 150-nm polystyrene nanoparticles. Furthermore, exosome separation was also demonstrated. This technology overcomes the limitation of continuously manipulating particles under 200 nm and has the potential to be useful for a wide range of applications in chemistry, life sciences, and medicine. Virtual channels consisting of microscale acoustic streaming vortices enable the manipulation of nanoparticles smaller than 200 nm.</abstract><pub>American Association for the Advancement of Science</pub><pmid>35905179</pmid><doi>10.1126/sciadv.abn8440</doi><orcidid>https://orcid.org/0000-0002-9888-9850</orcidid><orcidid>https://orcid.org/0000-0002-5313-3654</orcidid><orcidid>https://orcid.org/0000-0002-7550-3951</orcidid><orcidid>https://orcid.org/0000-0003-4235-4897</orcidid><orcidid>https://orcid.org/0000-0003-0463-8549</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2022-07, Vol.8 (30), p.eabn8440-eabn8440
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9337757
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Applied Physics
Applied Sciences and Engineering
Physical and Materials Sciences
SciAdv r-articles
title Self-adaptive virtual microchannel for continuous enrichment and separation of nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-adaptive%20virtual%20microchannel%20for%20continuous%20enrichment%20and%20separation%20of%20nanoparticles&rft.jtitle=Science%20advances&rft.au=Yang,%20Yang&rft.date=2022-07-29&rft.volume=8&rft.issue=30&rft.spage=eabn8440&rft.epage=eabn8440&rft.pages=eabn8440-eabn8440&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abn8440&rft_dat=%3Cproquest_pubme%3E2696865570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696865570&rft_id=info:pmid/35905179&rfr_iscdi=true