Design of Water Quality Monitoring System in Shaanxi Section of Weihe River Basin Based on the Internet of Things

Monitoring environmental water quality in an efficient, cheap, and sustainable way can better serve the country’s strategic requirements for water resources and water ecological protection. This paper takes the Shaanxi section of the Weihe River Basin as a pilot project and aims to use the Internet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience 2022-07, Vol.2022, p.3543937-7
Hauptverfasser: Dang, Tianjiao, Liu, Jifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 3543937
container_title Computational intelligence and neuroscience
container_volume 2022
creator Dang, Tianjiao
Liu, Jifa
description Monitoring environmental water quality in an efficient, cheap, and sustainable way can better serve the country’s strategic requirements for water resources and water ecological protection. This paper takes the Shaanxi section of the Weihe River Basin as a pilot project and aims to use the Internet of Things technology to develop water quality monitoring sensors, so as to realize the construction of low-cost, high-reliability water quality monitoring demonstration applications. First of all, we established the design of the water quality collection terminal, designed the low-power water quality sensor node, supported the Internet of Things protocol and the collection of various water quality parameters, and used networking for data transmission. Secondly, we use the ant colony algorithm-based system clustering model to obtain a cluster map of water quality monitoring tasks in a certain section of the Weihe River Basin. We take the task clustering graph as an example for analysis, optimize the monitoring model through the ant colony algorithm, and obtain the weight of the optimization index. The weight of the scheduled task limit of the monitoring point becomes larger, so the release of the monitoring task mainly affects the limit of the scheduled task of the monitoring point. Through the above work, we designed and implemented a set of online water quality monitoring system based on the Internet of Things and data mining technology. The system can provide reference for large-scale water resource protection and water environment governance.
doi_str_mv 10.1155/2022/3543937
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9334113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A712138225</galeid><sourcerecordid>A712138225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-2240de523990ba9f09b14ab2309cc36adff106616a528eed193fb139770fba513</originalsourceid><addsrcrecordid>eNp9kU1PVDEUhhsjEUR3rkkTljrQj9v2dkOCKB8JxuhgXDa9957OlMy00HbQ-fd0MsMgGzdtk_c5T076IvSBkiNKhThmhLFjLhquuXqF9qhs1UgwxV9v31Lsorc53xIilCDsDdrlQhPdNnoP3X-B7CcBR4d_2wIJ_1jYmS9L_C0GX2LyYYLHy1xgjn3A46m14a_HY-iLj-sp8FPAP_1Dnf1sc4XqCQOuaanBVajSAGWF3kyrLb9DO87OMrzf3Pvo1_nXm7PL0fX3i6uz0-tR3yhZRow1ZADBuNaks9oR3dHGdowT3fdc2sE5SqSk0grWAgxUc9dRrpUirrOC8n10svbeLbo5DD2EkuzM3CU_t2lpovXmZRL81Ezig9GcN5TyKjjcCFK8X0Au5jYuUqg7Gya1VLxtZPNMTewMjA8uVlk_97k3p4oyylvGRKU-rak-xZwTuO0elJhVjWZVo9nUWPGDf3ffwk-9VeDjGqhfOtg__v-6R86jpBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696738464</pqid></control><display><type>article</type><title>Design of Water Quality Monitoring System in Shaanxi Section of Weihe River Basin Based on the Internet of Things</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dang, Tianjiao ; Liu, Jifa</creator><contributor>Khan, Rahim ; Rahim Khan</contributor><creatorcontrib>Dang, Tianjiao ; Liu, Jifa ; Khan, Rahim ; Rahim Khan</creatorcontrib><description>Monitoring environmental water quality in an efficient, cheap, and sustainable way can better serve the country’s strategic requirements for water resources and water ecological protection. This paper takes the Shaanxi section of the Weihe River Basin as a pilot project and aims to use the Internet of Things technology to develop water quality monitoring sensors, so as to realize the construction of low-cost, high-reliability water quality monitoring demonstration applications. First of all, we established the design of the water quality collection terminal, designed the low-power water quality sensor node, supported the Internet of Things protocol and the collection of various water quality parameters, and used networking for data transmission. Secondly, we use the ant colony algorithm-based system clustering model to obtain a cluster map of water quality monitoring tasks in a certain section of the Weihe River Basin. We take the task clustering graph as an example for analysis, optimize the monitoring model through the ant colony algorithm, and obtain the weight of the optimization index. The weight of the scheduled task limit of the monitoring point becomes larger, so the release of the monitoring task mainly affects the limit of the scheduled task of the monitoring point. Through the above work, we designed and implemented a set of online water quality monitoring system based on the Internet of Things and data mining technology. The system can provide reference for large-scale water resource protection and water environment governance.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/3543937</identifier><identifier>PMID: 35909849</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Agricultural production ; Algorithms ; Analysis ; Ant colony optimization ; Aquatic resources ; Chemical oxygen demand ; China ; Clustering ; Data mining ; Data transmission ; Economic development ; Environmental monitoring ; Environmental Monitoring - methods ; Hydrology ; Internet ; Internet of Things ; Monitoring ; Monitoring systems ; Pilot Projects ; Reproducibility of Results ; River basins ; Rivers ; Sensors ; Water area ; Water pollution ; Water Quality ; Water resources</subject><ispartof>Computational intelligence and neuroscience, 2022-07, Vol.2022, p.3543937-7</ispartof><rights>Copyright © 2022 Tianjiao Dang and Jifa Liu.</rights><rights>COPYRIGHT 2022 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2022 Tianjiao Dang and Jifa Liu. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Tianjiao Dang and Jifa Liu. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-2240de523990ba9f09b14ab2309cc36adff106616a528eed193fb139770fba513</citedby><cites>FETCH-LOGICAL-c476t-2240de523990ba9f09b14ab2309cc36adff106616a528eed193fb139770fba513</cites><orcidid>0000-0001-5027-3427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334113/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9334113/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35909849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Khan, Rahim</contributor><contributor>Rahim Khan</contributor><creatorcontrib>Dang, Tianjiao</creatorcontrib><creatorcontrib>Liu, Jifa</creatorcontrib><title>Design of Water Quality Monitoring System in Shaanxi Section of Weihe River Basin Based on the Internet of Things</title><title>Computational intelligence and neuroscience</title><addtitle>Comput Intell Neurosci</addtitle><description>Monitoring environmental water quality in an efficient, cheap, and sustainable way can better serve the country’s strategic requirements for water resources and water ecological protection. This paper takes the Shaanxi section of the Weihe River Basin as a pilot project and aims to use the Internet of Things technology to develop water quality monitoring sensors, so as to realize the construction of low-cost, high-reliability water quality monitoring demonstration applications. First of all, we established the design of the water quality collection terminal, designed the low-power water quality sensor node, supported the Internet of Things protocol and the collection of various water quality parameters, and used networking for data transmission. Secondly, we use the ant colony algorithm-based system clustering model to obtain a cluster map of water quality monitoring tasks in a certain section of the Weihe River Basin. We take the task clustering graph as an example for analysis, optimize the monitoring model through the ant colony algorithm, and obtain the weight of the optimization index. The weight of the scheduled task limit of the monitoring point becomes larger, so the release of the monitoring task mainly affects the limit of the scheduled task of the monitoring point. Through the above work, we designed and implemented a set of online water quality monitoring system based on the Internet of Things and data mining technology. The system can provide reference for large-scale water resource protection and water environment governance.</description><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Ant colony optimization</subject><subject>Aquatic resources</subject><subject>Chemical oxygen demand</subject><subject>China</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Data transmission</subject><subject>Economic development</subject><subject>Environmental monitoring</subject><subject>Environmental Monitoring - methods</subject><subject>Hydrology</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Pilot Projects</subject><subject>Reproducibility of Results</subject><subject>River basins</subject><subject>Rivers</subject><subject>Sensors</subject><subject>Water area</subject><subject>Water pollution</subject><subject>Water Quality</subject><subject>Water resources</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PVDEUhhsjEUR3rkkTljrQj9v2dkOCKB8JxuhgXDa9957OlMy00HbQ-fd0MsMgGzdtk_c5T076IvSBkiNKhThmhLFjLhquuXqF9qhs1UgwxV9v31Lsorc53xIilCDsDdrlQhPdNnoP3X-B7CcBR4d_2wIJ_1jYmS9L_C0GX2LyYYLHy1xgjn3A46m14a_HY-iLj-sp8FPAP_1Dnf1sc4XqCQOuaanBVajSAGWF3kyrLb9DO87OMrzf3Pvo1_nXm7PL0fX3i6uz0-tR3yhZRow1ZADBuNaks9oR3dHGdowT3fdc2sE5SqSk0grWAgxUc9dRrpUirrOC8n10svbeLbo5DD2EkuzM3CU_t2lpovXmZRL81Ezig9GcN5TyKjjcCFK8X0Au5jYuUqg7Gya1VLxtZPNMTewMjA8uVlk_97k3p4oyylvGRKU-rak-xZwTuO0elJhVjWZVo9nUWPGDf3ffwk-9VeDjGqhfOtg__v-6R86jpBQ</recordid><startdate>20220721</startdate><enddate>20220721</enddate><creator>Dang, Tianjiao</creator><creator>Liu, Jifa</creator><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5027-3427</orcidid></search><sort><creationdate>20220721</creationdate><title>Design of Water Quality Monitoring System in Shaanxi Section of Weihe River Basin Based on the Internet of Things</title><author>Dang, Tianjiao ; Liu, Jifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-2240de523990ba9f09b14ab2309cc36adff106616a528eed193fb139770fba513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Ant colony optimization</topic><topic>Aquatic resources</topic><topic>Chemical oxygen demand</topic><topic>China</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Data transmission</topic><topic>Economic development</topic><topic>Environmental monitoring</topic><topic>Environmental Monitoring - methods</topic><topic>Hydrology</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Pilot Projects</topic><topic>Reproducibility of Results</topic><topic>River basins</topic><topic>Rivers</topic><topic>Sensors</topic><topic>Water area</topic><topic>Water pollution</topic><topic>Water Quality</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Tianjiao</creatorcontrib><creatorcontrib>Liu, Jifa</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Tianjiao</au><au>Liu, Jifa</au><au>Khan, Rahim</au><au>Rahim Khan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Water Quality Monitoring System in Shaanxi Section of Weihe River Basin Based on the Internet of Things</atitle><jtitle>Computational intelligence and neuroscience</jtitle><addtitle>Comput Intell Neurosci</addtitle><date>2022-07-21</date><risdate>2022</risdate><volume>2022</volume><spage>3543937</spage><epage>7</epage><pages>3543937-7</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>Monitoring environmental water quality in an efficient, cheap, and sustainable way can better serve the country’s strategic requirements for water resources and water ecological protection. This paper takes the Shaanxi section of the Weihe River Basin as a pilot project and aims to use the Internet of Things technology to develop water quality monitoring sensors, so as to realize the construction of low-cost, high-reliability water quality monitoring demonstration applications. First of all, we established the design of the water quality collection terminal, designed the low-power water quality sensor node, supported the Internet of Things protocol and the collection of various water quality parameters, and used networking for data transmission. Secondly, we use the ant colony algorithm-based system clustering model to obtain a cluster map of water quality monitoring tasks in a certain section of the Weihe River Basin. We take the task clustering graph as an example for analysis, optimize the monitoring model through the ant colony algorithm, and obtain the weight of the optimization index. The weight of the scheduled task limit of the monitoring point becomes larger, so the release of the monitoring task mainly affects the limit of the scheduled task of the monitoring point. Through the above work, we designed and implemented a set of online water quality monitoring system based on the Internet of Things and data mining technology. The system can provide reference for large-scale water resource protection and water environment governance.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>35909849</pmid><doi>10.1155/2022/3543937</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5027-3427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5265
ispartof Computational intelligence and neuroscience, 2022-07, Vol.2022, p.3543937-7
issn 1687-5265
1687-5273
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9334113
source MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Agricultural production
Algorithms
Analysis
Ant colony optimization
Aquatic resources
Chemical oxygen demand
China
Clustering
Data mining
Data transmission
Economic development
Environmental monitoring
Environmental Monitoring - methods
Hydrology
Internet
Internet of Things
Monitoring
Monitoring systems
Pilot Projects
Reproducibility of Results
River basins
Rivers
Sensors
Water area
Water pollution
Water Quality
Water resources
title Design of Water Quality Monitoring System in Shaanxi Section of Weihe River Basin Based on the Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Water%20Quality%20Monitoring%20System%20in%20Shaanxi%20Section%20of%20Weihe%20River%20Basin%20Based%20on%20the%20Internet%20of%20Things&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Dang,%20Tianjiao&rft.date=2022-07-21&rft.volume=2022&rft.spage=3543937&rft.epage=7&rft.pages=3543937-7&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/3543937&rft_dat=%3Cgale_pubme%3EA712138225%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2696738464&rft_id=info:pmid/35909849&rft_galeid=A712138225&rfr_iscdi=true