Catalytic DNA Polymerization Can Be Expedited by Active Product Release
The sequence‐specific hybridization of DNA facilitates its use as a building block for designer nanoscale structures and reaction networks that perform computations. However, the strong binding energy of Watson–Crick base pairing that underlies this specificity also causes the DNA dehybridization ra...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2022-06, Vol.61 (24), p.e202114581-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 24 |
container_start_page | e202114581 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 61 |
creator | Moerman, Pepijn G. Gavrilov, Momcilo Ha, Taekjip Schulman, Rebecca |
description | The sequence‐specific hybridization of DNA facilitates its use as a building block for designer nanoscale structures and reaction networks that perform computations. However, the strong binding energy of Watson–Crick base pairing that underlies this specificity also causes the DNA dehybridization rate to depend sensitively on sequence length and temperature. This strong dependency imposes stringent constraints on the design of multi‐step DNA reactions. Here we show how an ATP‐dependent helicase, Rep‐X, can drive specific dehybridization reactions at rates independent of sequence length, removing the constraints of equilibrium on DNA hybridization and dehybridization. To illustrate how this new capacity can speed up designed DNA reaction networks, we show that Rep‐X extends the range of conditions where the primer exchange reaction, which catalytically adds a domain provided by a hairpin template to a DNA substrate, proceeds rapidly.
The rate of the primer exchange reaction is a strongly peaked function of the binding strength between the reactant and catalyst strands. This trend holds for many catalytic reactions and is known as Sabatier's principle. A helicase that consumes ATP to selectively remove the products from the catalysts can speed up the reaction in the strong‐binding regime and reduce the dependency of the catalytic rate on the binding strength. |
doi_str_mv | 10.1002/anie.202114581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9325435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641004097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4951-9076651ee0f9eecafa4a8bdd044ddd7a29d7de58953a6051069c1e62d4ca37c33</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EoiWwZYlGsGEzwW-PN0ghpKVSVSoEa8uxb6iriR3GnsLw63GVNjw2rK6l-_nY5xyEnhM8JxjTNzYGmFNMCeGiIw_QMRGUtEwp9rCeOWOt6gQ5Qk9yvq5812H5GB0xwTBVWB6j06Uttp9KcM37i0VzmfppC0P4aUtIsVna2LyDZvVjBz4U8M16ahauhBtoLofkR1eaT9CDzfAUPdrYPsOzuzlDX05Wn5cf2vOPp2fLxXnruBak1VhJKQgA3mgAZzeW227tPebce68s1V55EJ0WzEosCJbaEZDUc2eZcozN0Nu97m5cb8E7iGWwvdkNYWuHySQbzN-bGK7M13RjNKOCV98z9HIvkHIJJrtqy125FCO4YkgnORa4Qq_vXhnStxFyMduQHfS9jZDGbKjkNX2Otaroq3_Q6zQOsWZQKam1Zh3llZrvKTeknAfYHH5MsLkt0twWaQ5F1gsv_vR5wO-bq4DeA99DD9N_5Mzi4mz1W_wXX8upOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669993824</pqid></control><display><type>article</type><title>Catalytic DNA Polymerization Can Be Expedited by Active Product Release</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moerman, Pepijn G. ; Gavrilov, Momcilo ; Ha, Taekjip ; Schulman, Rebecca</creator><creatorcontrib>Moerman, Pepijn G. ; Gavrilov, Momcilo ; Ha, Taekjip ; Schulman, Rebecca ; Johns Hopkins University, Baltimore, MD (United States)</creatorcontrib><description>The sequence‐specific hybridization of DNA facilitates its use as a building block for designer nanoscale structures and reaction networks that perform computations. However, the strong binding energy of Watson–Crick base pairing that underlies this specificity also causes the DNA dehybridization rate to depend sensitively on sequence length and temperature. This strong dependency imposes stringent constraints on the design of multi‐step DNA reactions. Here we show how an ATP‐dependent helicase, Rep‐X, can drive specific dehybridization reactions at rates independent of sequence length, removing the constraints of equilibrium on DNA hybridization and dehybridization. To illustrate how this new capacity can speed up designed DNA reaction networks, we show that Rep‐X extends the range of conditions where the primer exchange reaction, which catalytically adds a domain provided by a hairpin template to a DNA substrate, proceeds rapidly.
The rate of the primer exchange reaction is a strongly peaked function of the binding strength between the reactant and catalyst strands. This trend holds for many catalytic reactions and is known as Sabatier's principle. A helicase that consumes ATP to selectively remove the products from the catalysts can speed up the reaction in the strong‐binding regime and reduce the dependency of the catalytic rate on the binding strength.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202114581</identifier><identifier>PMID: 35302706</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Active Processes ; BASIC BIOLOGICAL SCIENCES ; Biophysics ; Catalysis ; Deoxyribonucleic acid ; DNA ; DNA helicase ; DNA Nanotechnology ; Enzyme Catalysis ; Hybridization ; Kinetics ; nanotechnology ; Nucleotide sequence ; Substrates ; Temperature dependence</subject><ispartof>Angewandte Chemie (International ed.), 2022-06, Vol.61 (24), p.e202114581-n/a</ispartof><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4951-9076651ee0f9eecafa4a8bdd044ddd7a29d7de58953a6051069c1e62d4ca37c33</citedby><cites>FETCH-LOGICAL-c4951-9076651ee0f9eecafa4a8bdd044ddd7a29d7de58953a6051069c1e62d4ca37c33</cites><orcidid>0000-0003-4255-2973 ; 0000-0003-4555-3162 ; 0000000342552973 ; 0000000345553162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202114581$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202114581$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35302706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1864050$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moerman, Pepijn G.</creatorcontrib><creatorcontrib>Gavrilov, Momcilo</creatorcontrib><creatorcontrib>Ha, Taekjip</creatorcontrib><creatorcontrib>Schulman, Rebecca</creatorcontrib><creatorcontrib>Johns Hopkins University, Baltimore, MD (United States)</creatorcontrib><title>Catalytic DNA Polymerization Can Be Expedited by Active Product Release</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The sequence‐specific hybridization of DNA facilitates its use as a building block for designer nanoscale structures and reaction networks that perform computations. However, the strong binding energy of Watson–Crick base pairing that underlies this specificity also causes the DNA dehybridization rate to depend sensitively on sequence length and temperature. This strong dependency imposes stringent constraints on the design of multi‐step DNA reactions. Here we show how an ATP‐dependent helicase, Rep‐X, can drive specific dehybridization reactions at rates independent of sequence length, removing the constraints of equilibrium on DNA hybridization and dehybridization. To illustrate how this new capacity can speed up designed DNA reaction networks, we show that Rep‐X extends the range of conditions where the primer exchange reaction, which catalytically adds a domain provided by a hairpin template to a DNA substrate, proceeds rapidly.
The rate of the primer exchange reaction is a strongly peaked function of the binding strength between the reactant and catalyst strands. This trend holds for many catalytic reactions and is known as Sabatier's principle. A helicase that consumes ATP to selectively remove the products from the catalysts can speed up the reaction in the strong‐binding regime and reduce the dependency of the catalytic rate on the binding strength.</description><subject>Active Processes</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biophysics</subject><subject>Catalysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA helicase</subject><subject>DNA Nanotechnology</subject><subject>Enzyme Catalysis</subject><subject>Hybridization</subject><subject>Kinetics</subject><subject>nanotechnology</subject><subject>Nucleotide sequence</subject><subject>Substrates</subject><subject>Temperature dependence</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtvEzEUhS0EoiWwZYlGsGEzwW-PN0ghpKVSVSoEa8uxb6iriR3GnsLw63GVNjw2rK6l-_nY5xyEnhM8JxjTNzYGmFNMCeGiIw_QMRGUtEwp9rCeOWOt6gQ5Qk9yvq5812H5GB0xwTBVWB6j06Uttp9KcM37i0VzmfppC0P4aUtIsVna2LyDZvVjBz4U8M16ahauhBtoLofkR1eaT9CDzfAUPdrYPsOzuzlDX05Wn5cf2vOPp2fLxXnruBak1VhJKQgA3mgAZzeW227tPebce68s1V55EJ0WzEosCJbaEZDUc2eZcozN0Nu97m5cb8E7iGWwvdkNYWuHySQbzN-bGK7M13RjNKOCV98z9HIvkHIJJrtqy125FCO4YkgnORa4Qq_vXhnStxFyMduQHfS9jZDGbKjkNX2Otaroq3_Q6zQOsWZQKam1Zh3llZrvKTeknAfYHH5MsLkt0twWaQ5F1gsv_vR5wO-bq4DeA99DD9N_5Mzi4mz1W_wXX8upOA</recordid><startdate>20220613</startdate><enddate>20220613</enddate><creator>Moerman, Pepijn G.</creator><creator>Gavrilov, Momcilo</creator><creator>Ha, Taekjip</creator><creator>Schulman, Rebecca</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4255-2973</orcidid><orcidid>https://orcid.org/0000-0003-4555-3162</orcidid><orcidid>https://orcid.org/0000000342552973</orcidid><orcidid>https://orcid.org/0000000345553162</orcidid></search><sort><creationdate>20220613</creationdate><title>Catalytic DNA Polymerization Can Be Expedited by Active Product Release</title><author>Moerman, Pepijn G. ; Gavrilov, Momcilo ; Ha, Taekjip ; Schulman, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4951-9076651ee0f9eecafa4a8bdd044ddd7a29d7de58953a6051069c1e62d4ca37c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active Processes</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biophysics</topic><topic>Catalysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA helicase</topic><topic>DNA Nanotechnology</topic><topic>Enzyme Catalysis</topic><topic>Hybridization</topic><topic>Kinetics</topic><topic>nanotechnology</topic><topic>Nucleotide sequence</topic><topic>Substrates</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moerman, Pepijn G.</creatorcontrib><creatorcontrib>Gavrilov, Momcilo</creatorcontrib><creatorcontrib>Ha, Taekjip</creatorcontrib><creatorcontrib>Schulman, Rebecca</creatorcontrib><creatorcontrib>Johns Hopkins University, Baltimore, MD (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moerman, Pepijn G.</au><au>Gavrilov, Momcilo</au><au>Ha, Taekjip</au><au>Schulman, Rebecca</au><aucorp>Johns Hopkins University, Baltimore, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic DNA Polymerization Can Be Expedited by Active Product Release</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-06-13</date><risdate>2022</risdate><volume>61</volume><issue>24</issue><spage>e202114581</spage><epage>n/a</epage><pages>e202114581-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The sequence‐specific hybridization of DNA facilitates its use as a building block for designer nanoscale structures and reaction networks that perform computations. However, the strong binding energy of Watson–Crick base pairing that underlies this specificity also causes the DNA dehybridization rate to depend sensitively on sequence length and temperature. This strong dependency imposes stringent constraints on the design of multi‐step DNA reactions. Here we show how an ATP‐dependent helicase, Rep‐X, can drive specific dehybridization reactions at rates independent of sequence length, removing the constraints of equilibrium on DNA hybridization and dehybridization. To illustrate how this new capacity can speed up designed DNA reaction networks, we show that Rep‐X extends the range of conditions where the primer exchange reaction, which catalytically adds a domain provided by a hairpin template to a DNA substrate, proceeds rapidly.
The rate of the primer exchange reaction is a strongly peaked function of the binding strength between the reactant and catalyst strands. This trend holds for many catalytic reactions and is known as Sabatier's principle. A helicase that consumes ATP to selectively remove the products from the catalysts can speed up the reaction in the strong‐binding regime and reduce the dependency of the catalytic rate on the binding strength.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35302706</pmid><doi>10.1002/anie.202114581</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4255-2973</orcidid><orcidid>https://orcid.org/0000-0003-4555-3162</orcidid><orcidid>https://orcid.org/0000000342552973</orcidid><orcidid>https://orcid.org/0000000345553162</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2022-06, Vol.61 (24), p.e202114581-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9325435 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Active Processes BASIC BIOLOGICAL SCIENCES Biophysics Catalysis Deoxyribonucleic acid DNA DNA helicase DNA Nanotechnology Enzyme Catalysis Hybridization Kinetics nanotechnology Nucleotide sequence Substrates Temperature dependence |
title | Catalytic DNA Polymerization Can Be Expedited by Active Product Release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20DNA%20Polymerization%20Can%20Be%20Expedited%20by%20Active%20Product%20Release&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Moerman,%20Pepijn%20G.&rft.aucorp=Johns%20Hopkins%20University,%20Baltimore,%20MD%20(United%20States)&rft.date=2022-06-13&rft.volume=61&rft.issue=24&rft.spage=e202114581&rft.epage=n/a&rft.pages=e202114581-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202114581&rft_dat=%3Cproquest_pubme%3E2641004097%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669993824&rft_id=info:pmid/35302706&rfr_iscdi=true |