Formation of LiF‐rich Cathode‐Electrolyte Interphase by Electrolyte Reduction
The capacity of transition metal oxide cathode for Li‐ion batteries can be further enhanced by increasing the charging potential. However, these high voltage cathodes suffer from fast capacity decay because the large volume change of cathode breaks the active materials and cathode‐electrolyte interp...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-06, Vol.61 (26), p.e202202731-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 26 |
container_start_page | e202202731 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Bai, Panxing Ji, Xiao Zhang, Jiaxun Zhang, Weiran Hou, Singyuk Su, Hai Li, Mengjie Deng, Tao Cao, Longsheng Liu, Sufu He, Xinzi Xu, Yunhua Wang, Chunsheng |
description | The capacity of transition metal oxide cathode for Li‐ion batteries can be further enhanced by increasing the charging potential. However, these high voltage cathodes suffer from fast capacity decay because the large volume change of cathode breaks the active materials and cathode‐electrolyte interphase (CEI), resulting in electrolyte penetration into broken active materials and continuous side reactions between cathode and electrolytes. Herein, a robust LiF‐rich CEI was formed by potentiostatic reduction of fluorinated electrolyte at a low potential of 1.7 V. By taking LiCoO2 as a model cathode, we demonstrate that the LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration at a high cut‐off potential of 4.6 V. The LiCoO2 with LiF‐rich CEI exhibited a capacity of 198 mAh g−1 at 0.5C and an enhanced capacity retention of 63.5 % over 400 cycles as compared to the LiF‐free LiCoO2 with only 17.4 % of capacity retention.
A robust LiF‐rich cathode‐electrolyte interphase (CEI) is successfully constructed on LiCoO2 cathode by potentiostatic reduction of fluorinated electrolyte at 1.7 V. LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration and Co dissolution during cycling at a high cut‐off voltage of 4.6 V, demonstrating an excellent cyclability with high capacity retention of 63.5 % over 400 cycles at 0.5C. |
doi_str_mv | 10.1002/anie.202202731 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9322663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678326532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4681-7ea06e8149aa66ff62070323316dd2763607be55a2f5d683834c525c0e658ce73</originalsourceid><addsrcrecordid>eNqFkc-LEzEUx4O4uLvVq0cZ8OJlapI3-TEXYSntWiguK3oOaeaNzTKd1GRG6c0_wb_Rv8SUrnX1shBIHu-TD-_xJeQlo1NGKX9re49TTnk-CtgTcsEEZyUoBU_zuwIolRbsnFymdJd5ral8Rs5BQC0YExfkdhHi1g4-9EVoi5Vf_PrxM3q3KWZ22IQGcznv0A0xdPsBi2U_YNxtbMJivS8edj5iM7qD5zk5a22X8MX9PSGfF_NPs_fl6uZ6Obtala6SmpUKLZWoWVVbK2XbSk4VBQ7AZNNwJUFStUYhLG9FIzVoqJzgwlGUQjtUMCHvjt7duN5i47Afou3MLvqtjXsTrDf_dnq_MV_CN1MD51JCFry5F8TwdcQ0mK1PDrvO9hjGZListK4rzeuMvv4PvQtj7PN6mVIauBR59AmZHikXQ0oR29MwjJpDWuaQljmllT-8erjCCf8TTwbqI_Ddd7h_RGeuPiznf-W_AdzbotA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678326532</pqid></control><display><type>article</type><title>Formation of LiF‐rich Cathode‐Electrolyte Interphase by Electrolyte Reduction</title><source>Wiley Online Library All Journals</source><creator>Bai, Panxing ; Ji, Xiao ; Zhang, Jiaxun ; Zhang, Weiran ; Hou, Singyuk ; Su, Hai ; Li, Mengjie ; Deng, Tao ; Cao, Longsheng ; Liu, Sufu ; He, Xinzi ; Xu, Yunhua ; Wang, Chunsheng</creator><creatorcontrib>Bai, Panxing ; Ji, Xiao ; Zhang, Jiaxun ; Zhang, Weiran ; Hou, Singyuk ; Su, Hai ; Li, Mengjie ; Deng, Tao ; Cao, Longsheng ; Liu, Sufu ; He, Xinzi ; Xu, Yunhua ; Wang, Chunsheng</creatorcontrib><description>The capacity of transition metal oxide cathode for Li‐ion batteries can be further enhanced by increasing the charging potential. However, these high voltage cathodes suffer from fast capacity decay because the large volume change of cathode breaks the active materials and cathode‐electrolyte interphase (CEI), resulting in electrolyte penetration into broken active materials and continuous side reactions between cathode and electrolytes. Herein, a robust LiF‐rich CEI was formed by potentiostatic reduction of fluorinated electrolyte at a low potential of 1.7 V. By taking LiCoO2 as a model cathode, we demonstrate that the LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration at a high cut‐off potential of 4.6 V. The LiCoO2 with LiF‐rich CEI exhibited a capacity of 198 mAh g−1 at 0.5C and an enhanced capacity retention of 63.5 % over 400 cycles as compared to the LiF‐free LiCoO2 with only 17.4 % of capacity retention.
A robust LiF‐rich cathode‐electrolyte interphase (CEI) is successfully constructed on LiCoO2 cathode by potentiostatic reduction of fluorinated electrolyte at 1.7 V. LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration and Co dissolution during cycling at a high cut‐off voltage of 4.6 V, demonstrating an excellent cyclability with high capacity retention of 63.5 % over 400 cycles at 0.5C.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202202731</identifier><identifier>PMID: 35395115</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Cathodes ; Decay rate ; Electrolytes ; Fluorinated Electrolyte ; High voltage ; High-voltage Cathodes ; Interphase ; LiF-rich Cathode-Electrolyte Interphase ; Lithium compounds ; Lithium fluoride ; Lithium-ion batteries ; Penetration ; Potentiostatic Reduction ; Retention ; Side reactions ; Structural integrity ; Transition metal oxides</subject><ispartof>Angewandte Chemie International Edition, 2022-06, Vol.61 (26), p.e202202731-n/a</ispartof><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4681-7ea06e8149aa66ff62070323316dd2763607be55a2f5d683834c525c0e658ce73</citedby><cites>FETCH-LOGICAL-c4681-7ea06e8149aa66ff62070323316dd2763607be55a2f5d683834c525c0e658ce73</cites><orcidid>0000-0002-8626-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202202731$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202202731$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35395115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Panxing</creatorcontrib><creatorcontrib>Ji, Xiao</creatorcontrib><creatorcontrib>Zhang, Jiaxun</creatorcontrib><creatorcontrib>Zhang, Weiran</creatorcontrib><creatorcontrib>Hou, Singyuk</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Li, Mengjie</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Cao, Longsheng</creatorcontrib><creatorcontrib>Liu, Sufu</creatorcontrib><creatorcontrib>He, Xinzi</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><title>Formation of LiF‐rich Cathode‐Electrolyte Interphase by Electrolyte Reduction</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The capacity of transition metal oxide cathode for Li‐ion batteries can be further enhanced by increasing the charging potential. However, these high voltage cathodes suffer from fast capacity decay because the large volume change of cathode breaks the active materials and cathode‐electrolyte interphase (CEI), resulting in electrolyte penetration into broken active materials and continuous side reactions between cathode and electrolytes. Herein, a robust LiF‐rich CEI was formed by potentiostatic reduction of fluorinated electrolyte at a low potential of 1.7 V. By taking LiCoO2 as a model cathode, we demonstrate that the LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration at a high cut‐off potential of 4.6 V. The LiCoO2 with LiF‐rich CEI exhibited a capacity of 198 mAh g−1 at 0.5C and an enhanced capacity retention of 63.5 % over 400 cycles as compared to the LiF‐free LiCoO2 with only 17.4 % of capacity retention.
A robust LiF‐rich cathode‐electrolyte interphase (CEI) is successfully constructed on LiCoO2 cathode by potentiostatic reduction of fluorinated electrolyte at 1.7 V. LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration and Co dissolution during cycling at a high cut‐off voltage of 4.6 V, demonstrating an excellent cyclability with high capacity retention of 63.5 % over 400 cycles at 0.5C.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Decay rate</subject><subject>Electrolytes</subject><subject>Fluorinated Electrolyte</subject><subject>High voltage</subject><subject>High-voltage Cathodes</subject><subject>Interphase</subject><subject>LiF-rich Cathode-Electrolyte Interphase</subject><subject>Lithium compounds</subject><subject>Lithium fluoride</subject><subject>Lithium-ion batteries</subject><subject>Penetration</subject><subject>Potentiostatic Reduction</subject><subject>Retention</subject><subject>Side reactions</subject><subject>Structural integrity</subject><subject>Transition metal oxides</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc-LEzEUx4O4uLvVq0cZ8OJlapI3-TEXYSntWiguK3oOaeaNzTKd1GRG6c0_wb_Rv8SUrnX1shBIHu-TD-_xJeQlo1NGKX9re49TTnk-CtgTcsEEZyUoBU_zuwIolRbsnFymdJd5ral8Rs5BQC0YExfkdhHi1g4-9EVoi5Vf_PrxM3q3KWZ22IQGcznv0A0xdPsBi2U_YNxtbMJivS8edj5iM7qD5zk5a22X8MX9PSGfF_NPs_fl6uZ6Obtala6SmpUKLZWoWVVbK2XbSk4VBQ7AZNNwJUFStUYhLG9FIzVoqJzgwlGUQjtUMCHvjt7duN5i47Afou3MLvqtjXsTrDf_dnq_MV_CN1MD51JCFry5F8TwdcQ0mK1PDrvO9hjGZListK4rzeuMvv4PvQtj7PN6mVIauBR59AmZHikXQ0oR29MwjJpDWuaQljmllT-8erjCCf8TTwbqI_Ddd7h_RGeuPiznf-W_AdzbotA</recordid><startdate>20220627</startdate><enddate>20220627</enddate><creator>Bai, Panxing</creator><creator>Ji, Xiao</creator><creator>Zhang, Jiaxun</creator><creator>Zhang, Weiran</creator><creator>Hou, Singyuk</creator><creator>Su, Hai</creator><creator>Li, Mengjie</creator><creator>Deng, Tao</creator><creator>Cao, Longsheng</creator><creator>Liu, Sufu</creator><creator>He, Xinzi</creator><creator>Xu, Yunhua</creator><creator>Wang, Chunsheng</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid></search><sort><creationdate>20220627</creationdate><title>Formation of LiF‐rich Cathode‐Electrolyte Interphase by Electrolyte Reduction</title><author>Bai, Panxing ; Ji, Xiao ; Zhang, Jiaxun ; Zhang, Weiran ; Hou, Singyuk ; Su, Hai ; Li, Mengjie ; Deng, Tao ; Cao, Longsheng ; Liu, Sufu ; He, Xinzi ; Xu, Yunhua ; Wang, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4681-7ea06e8149aa66ff62070323316dd2763607be55a2f5d683834c525c0e658ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Decay rate</topic><topic>Electrolytes</topic><topic>Fluorinated Electrolyte</topic><topic>High voltage</topic><topic>High-voltage Cathodes</topic><topic>Interphase</topic><topic>LiF-rich Cathode-Electrolyte Interphase</topic><topic>Lithium compounds</topic><topic>Lithium fluoride</topic><topic>Lithium-ion batteries</topic><topic>Penetration</topic><topic>Potentiostatic Reduction</topic><topic>Retention</topic><topic>Side reactions</topic><topic>Structural integrity</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Panxing</creatorcontrib><creatorcontrib>Ji, Xiao</creatorcontrib><creatorcontrib>Zhang, Jiaxun</creatorcontrib><creatorcontrib>Zhang, Weiran</creatorcontrib><creatorcontrib>Hou, Singyuk</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Li, Mengjie</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Cao, Longsheng</creatorcontrib><creatorcontrib>Liu, Sufu</creatorcontrib><creatorcontrib>He, Xinzi</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Panxing</au><au>Ji, Xiao</au><au>Zhang, Jiaxun</au><au>Zhang, Weiran</au><au>Hou, Singyuk</au><au>Su, Hai</au><au>Li, Mengjie</au><au>Deng, Tao</au><au>Cao, Longsheng</au><au>Liu, Sufu</au><au>He, Xinzi</au><au>Xu, Yunhua</au><au>Wang, Chunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of LiF‐rich Cathode‐Electrolyte Interphase by Electrolyte Reduction</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-06-27</date><risdate>2022</risdate><volume>61</volume><issue>26</issue><spage>e202202731</spage><epage>n/a</epage><pages>e202202731-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The capacity of transition metal oxide cathode for Li‐ion batteries can be further enhanced by increasing the charging potential. However, these high voltage cathodes suffer from fast capacity decay because the large volume change of cathode breaks the active materials and cathode‐electrolyte interphase (CEI), resulting in electrolyte penetration into broken active materials and continuous side reactions between cathode and electrolytes. Herein, a robust LiF‐rich CEI was formed by potentiostatic reduction of fluorinated electrolyte at a low potential of 1.7 V. By taking LiCoO2 as a model cathode, we demonstrate that the LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration at a high cut‐off potential of 4.6 V. The LiCoO2 with LiF‐rich CEI exhibited a capacity of 198 mAh g−1 at 0.5C and an enhanced capacity retention of 63.5 % over 400 cycles as compared to the LiF‐free LiCoO2 with only 17.4 % of capacity retention.
A robust LiF‐rich cathode‐electrolyte interphase (CEI) is successfully constructed on LiCoO2 cathode by potentiostatic reduction of fluorinated electrolyte at 1.7 V. LiF‐rich CEI maintains the structural integrity and suppresses electrolyte penetration and Co dissolution during cycling at a high cut‐off voltage of 4.6 V, demonstrating an excellent cyclability with high capacity retention of 63.5 % over 400 cycles at 0.5C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35395115</pmid><doi>10.1002/anie.202202731</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-06, Vol.61 (26), p.e202202731-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9322663 |
source | Wiley Online Library All Journals |
subjects | Batteries Cathodes Decay rate Electrolytes Fluorinated Electrolyte High voltage High-voltage Cathodes Interphase LiF-rich Cathode-Electrolyte Interphase Lithium compounds Lithium fluoride Lithium-ion batteries Penetration Potentiostatic Reduction Retention Side reactions Structural integrity Transition metal oxides |
title | Formation of LiF‐rich Cathode‐Electrolyte Interphase by Electrolyte Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20LiF%E2%80%90rich%20Cathode%E2%80%90Electrolyte%20Interphase%20by%20Electrolyte%20Reduction&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Bai,%20Panxing&rft.date=2022-06-27&rft.volume=61&rft.issue=26&rft.spage=e202202731&rft.epage=n/a&rft.pages=e202202731-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202202731&rft_dat=%3Cproquest_pubme%3E2678326532%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678326532&rft_id=info:pmid/35395115&rfr_iscdi=true |