Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping

Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of hematology 2022-05, Vol.97 (5), p.548-561
Hauptverfasser: Rack, Katrina, Bie, Jolien, Ameye, Geneviève, Gielen, Olga, Demeyer, Sofie, Cools, Jan, Keersmaecker, Kim, Vermeesch, Joris R., Maertens, Johan, Segers, Heidi, Michaux, Lucienne, Dewaele, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 561
container_issue 5
container_start_page 548
container_title American journal of hematology
container_volume 97
creator Rack, Katrina
Bie, Jolien
Ameye, Geneviève
Gielen, Olga
Demeyer, Sofie
Cools, Jan
Keersmaecker, Kim
Vermeesch, Joris R.
Maertens, Johan
Segers, Heidi
Michaux, Lucienne
Dewaele, Barbara
description Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.
doi_str_mv 10.1002/ajh.26487
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9314940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626018560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4437-7a90e42bef8a88da55bd3106bf0e57852303515aef6b90ef0943e09a097c70bc3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVoabZJD_kDRdBLe9hkZMmydSmE0HwRyKU5FiFrx7vayJYr2V22vz5KNg1poacZmIeHd3gJOWJwzACKE7NeHRdS1NUemTFQcl7LsnhDZsAlyzuoffI-pTUAY6KGd2Sfl4wpxtmM_LgdRte5365f0nGFdOHMsg9pdJZuQrxvfdjQNkRq7DQi9dtuWIXGmyfA43SPnTO02dKQNdZ4usQ-dEg7MwxZeUjetsYn_PA8D8jd-bfvZ5fzm9uLq7PTm7kVglfzyihAUTTY1qauF6YsmwVnIJsWsKzqsuCQE5cGW9lksgUlOIIyoCpbQWP5Afm68w5T0-HCYj9G4_UQXWfiVgfj9N-X3q30MvzSijOhBGTB52dBDD8nTKPuXLLovekxTEkXspDA6lI-op_-Qddhin1-L1OigkoJxjL1ZUfZGFKK2L6EYaAfS9O5NP1UWmY_vk7_Qv5pKQMnO2DjPG7_b9Kn15c75QMasqJ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2647079411</pqid></control><display><type>article</type><title>Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rack, Katrina ; Bie, Jolien ; Ameye, Geneviève ; Gielen, Olga ; Demeyer, Sofie ; Cools, Jan ; Keersmaecker, Kim ; Vermeesch, Joris R. ; Maertens, Johan ; Segers, Heidi ; Michaux, Lucienne ; Dewaele, Barbara</creator><creatorcontrib>Rack, Katrina ; Bie, Jolien ; Ameye, Geneviève ; Gielen, Olga ; Demeyer, Sofie ; Cools, Jan ; Keersmaecker, Kim ; Vermeesch, Joris R. ; Maertens, Johan ; Segers, Heidi ; Michaux, Lucienne ; Dewaele, Barbara</creatorcontrib><description>Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.</description><identifier>ISSN: 0361-8609</identifier><identifier>EISSN: 1096-8652</identifier><identifier>DOI: 10.1002/ajh.26487</identifier><identifier>PMID: 35119131</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acute lymphoblastic leukemia ; Chromosome Aberrations ; Chromosome banding ; Chromosome Mapping - methods ; Copy number ; Cytogenetics ; DNA Copy Number Variations ; Fusion protein ; Gene mapping ; Genomes ; Genomics ; Hematology ; Humans ; Hybridization ; Hypodiploidy ; Leukemia ; Lymphatic leukemia ; Malignancy ; Patients ; Ploidy ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Risk groups ; Single-nucleotide polymorphism ; Workflow</subject><ispartof>American journal of hematology, 2022-05, Vol.97 (5), p.548-561</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. American Journal of Hematology published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4437-7a90e42bef8a88da55bd3106bf0e57852303515aef6b90ef0943e09a097c70bc3</citedby><cites>FETCH-LOGICAL-c4437-7a90e42bef8a88da55bd3106bf0e57852303515aef6b90ef0943e09a097c70bc3</cites><orcidid>0000-0002-1183-5228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajh.26487$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajh.26487$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35119131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rack, Katrina</creatorcontrib><creatorcontrib>Bie, Jolien</creatorcontrib><creatorcontrib>Ameye, Geneviève</creatorcontrib><creatorcontrib>Gielen, Olga</creatorcontrib><creatorcontrib>Demeyer, Sofie</creatorcontrib><creatorcontrib>Cools, Jan</creatorcontrib><creatorcontrib>Keersmaecker, Kim</creatorcontrib><creatorcontrib>Vermeesch, Joris R.</creatorcontrib><creatorcontrib>Maertens, Johan</creatorcontrib><creatorcontrib>Segers, Heidi</creatorcontrib><creatorcontrib>Michaux, Lucienne</creatorcontrib><creatorcontrib>Dewaele, Barbara</creatorcontrib><title>Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping</title><title>American journal of hematology</title><addtitle>Am J Hematol</addtitle><description>Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.</description><subject>Acute lymphoblastic leukemia</subject><subject>Chromosome Aberrations</subject><subject>Chromosome banding</subject><subject>Chromosome Mapping - methods</subject><subject>Copy number</subject><subject>Cytogenetics</subject><subject>DNA Copy Number Variations</subject><subject>Fusion protein</subject><subject>Gene mapping</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hematology</subject><subject>Humans</subject><subject>Hybridization</subject><subject>Hypodiploidy</subject><subject>Leukemia</subject><subject>Lymphatic leukemia</subject><subject>Malignancy</subject><subject>Patients</subject><subject>Ploidy</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Risk groups</subject><subject>Single-nucleotide polymorphism</subject><subject>Workflow</subject><issn>0361-8609</issn><issn>1096-8652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU1r3DAQhkVoabZJD_kDRdBLe9hkZMmydSmE0HwRyKU5FiFrx7vayJYr2V22vz5KNg1poacZmIeHd3gJOWJwzACKE7NeHRdS1NUemTFQcl7LsnhDZsAlyzuoffI-pTUAY6KGd2Sfl4wpxtmM_LgdRte5365f0nGFdOHMsg9pdJZuQrxvfdjQNkRq7DQi9dtuWIXGmyfA43SPnTO02dKQNdZ4usQ-dEg7MwxZeUjetsYn_PA8D8jd-bfvZ5fzm9uLq7PTm7kVglfzyihAUTTY1qauF6YsmwVnIJsWsKzqsuCQE5cGW9lksgUlOIIyoCpbQWP5Afm68w5T0-HCYj9G4_UQXWfiVgfj9N-X3q30MvzSijOhBGTB52dBDD8nTKPuXLLovekxTEkXspDA6lI-op_-Qddhin1-L1OigkoJxjL1ZUfZGFKK2L6EYaAfS9O5NP1UWmY_vk7_Qv5pKQMnO2DjPG7_b9Kn15c75QMasqJ8</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Rack, Katrina</creator><creator>Bie, Jolien</creator><creator>Ameye, Geneviève</creator><creator>Gielen, Olga</creator><creator>Demeyer, Sofie</creator><creator>Cools, Jan</creator><creator>Keersmaecker, Kim</creator><creator>Vermeesch, Joris R.</creator><creator>Maertens, Johan</creator><creator>Segers, Heidi</creator><creator>Michaux, Lucienne</creator><creator>Dewaele, Barbara</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1183-5228</orcidid></search><sort><creationdate>202205</creationdate><title>Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping</title><author>Rack, Katrina ; Bie, Jolien ; Ameye, Geneviève ; Gielen, Olga ; Demeyer, Sofie ; Cools, Jan ; Keersmaecker, Kim ; Vermeesch, Joris R. ; Maertens, Johan ; Segers, Heidi ; Michaux, Lucienne ; Dewaele, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4437-7a90e42bef8a88da55bd3106bf0e57852303515aef6b90ef0943e09a097c70bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acute lymphoblastic leukemia</topic><topic>Chromosome Aberrations</topic><topic>Chromosome banding</topic><topic>Chromosome Mapping - methods</topic><topic>Copy number</topic><topic>Cytogenetics</topic><topic>DNA Copy Number Variations</topic><topic>Fusion protein</topic><topic>Gene mapping</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hematology</topic><topic>Humans</topic><topic>Hybridization</topic><topic>Hypodiploidy</topic><topic>Leukemia</topic><topic>Lymphatic leukemia</topic><topic>Malignancy</topic><topic>Patients</topic><topic>Ploidy</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Risk groups</topic><topic>Single-nucleotide polymorphism</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rack, Katrina</creatorcontrib><creatorcontrib>Bie, Jolien</creatorcontrib><creatorcontrib>Ameye, Geneviève</creatorcontrib><creatorcontrib>Gielen, Olga</creatorcontrib><creatorcontrib>Demeyer, Sofie</creatorcontrib><creatorcontrib>Cools, Jan</creatorcontrib><creatorcontrib>Keersmaecker, Kim</creatorcontrib><creatorcontrib>Vermeesch, Joris R.</creatorcontrib><creatorcontrib>Maertens, Johan</creatorcontrib><creatorcontrib>Segers, Heidi</creatorcontrib><creatorcontrib>Michaux, Lucienne</creatorcontrib><creatorcontrib>Dewaele, Barbara</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of hematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rack, Katrina</au><au>Bie, Jolien</au><au>Ameye, Geneviève</au><au>Gielen, Olga</au><au>Demeyer, Sofie</au><au>Cools, Jan</au><au>Keersmaecker, Kim</au><au>Vermeesch, Joris R.</au><au>Maertens, Johan</au><au>Segers, Heidi</au><au>Michaux, Lucienne</au><au>Dewaele, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping</atitle><jtitle>American journal of hematology</jtitle><addtitle>Am J Hematol</addtitle><date>2022-05</date><risdate>2022</risdate><volume>97</volume><issue>5</issue><spage>548</spage><epage>561</epage><pages>548-561</pages><issn>0361-8609</issn><eissn>1096-8652</eissn><abstract>Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35119131</pmid><doi>10.1002/ajh.26487</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1183-5228</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-8609
ispartof American journal of hematology, 2022-05, Vol.97 (5), p.548-561
issn 0361-8609
1096-8652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9314940
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acute lymphoblastic leukemia
Chromosome Aberrations
Chromosome banding
Chromosome Mapping - methods
Copy number
Cytogenetics
DNA Copy Number Variations
Fusion protein
Gene mapping
Genomes
Genomics
Hematology
Humans
Hybridization
Hypodiploidy
Leukemia
Lymphatic leukemia
Malignancy
Patients
Ploidy
Precursor Cell Lymphoblastic Leukemia-Lymphoma - diagnosis
Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics
Risk groups
Single-nucleotide polymorphism
Workflow
title Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20diagnostic%20workflow%20for%20acute%20lymphoblastic%20leukemia%20by%20optical%20genome%20mapping&rft.jtitle=American%20journal%20of%20hematology&rft.au=Rack,%20Katrina&rft.date=2022-05&rft.volume=97&rft.issue=5&rft.spage=548&rft.epage=561&rft.pages=548-561&rft.issn=0361-8609&rft.eissn=1096-8652&rft_id=info:doi/10.1002/ajh.26487&rft_dat=%3Cproquest_pubme%3E2626018560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2647079411&rft_id=info:pmid/35119131&rfr_iscdi=true