A prediction model for early systemic recurrence in breast cancer using a molecular diagnostic analysis of sentinel lymph nodes: A large‐scale, multicenter cohort study

Background The one‐step nucleic acid amplification (OSNA) assay can quantify the cytokeratin 19 messenger RNA copy number as a proxy for sentinel lymph node (SN) metastasis in breast cancer. A large‐scale, multicenter cohort study was performed to determine the prognostic value of the SN tumor burde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer 2022-05, Vol.128 (10), p.1913-1920
Hauptverfasser: Osako, Tomo, Matsuura, Masaaki, Yotsumoto, Daisuke, Takayama, Shin, Kaneko, Koji, Takahashi, Mina, Shimazu, Kenzo, Yoshidome, Katsuhide, Kuraoka, Kazuya, Itakura, Masayuki, Tani, Mayumi, Ishikawa, Takashi, Ohi, Yasuyo, Kinoshita, Takayuki, Sato, Nobuaki, Tsujimoto, Masahiko, Nakamura, Seigo, Tsuda, Hitoshi, Noguchi, Shinzaburo, Akiyama, Futoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1920
container_issue 10
container_start_page 1913
container_title Cancer
container_volume 128
creator Osako, Tomo
Matsuura, Masaaki
Yotsumoto, Daisuke
Takayama, Shin
Kaneko, Koji
Takahashi, Mina
Shimazu, Kenzo
Yoshidome, Katsuhide
Kuraoka, Kazuya
Itakura, Masayuki
Tani, Mayumi
Ishikawa, Takashi
Ohi, Yasuyo
Kinoshita, Takayuki
Sato, Nobuaki
Tsujimoto, Masahiko
Nakamura, Seigo
Tsuda, Hitoshi
Noguchi, Shinzaburo
Akiyama, Futoshi
description Background The one‐step nucleic acid amplification (OSNA) assay can quantify the cytokeratin 19 messenger RNA copy number as a proxy for sentinel lymph node (SN) metastasis in breast cancer. A large‐scale, multicenter cohort study was performed to determine the prognostic value of the SN tumor burden based on a molecular readout and to establish a model for the prediction of early systemic recurrence in patients using the OSNA assay. Methods SN biopsies from 4757 patients with breast cancer were analyzed with the OSNA assay. The patients were randomly assigned to the training or validation cohort at a ratio of 2:1. On the basis of the training cohort, the threshold SN tumor burden value for stratifying distant recurrence was determined with Youden's index; predictors of distant recurrence were investigated via multivariable analyses. Based on the selected predictors, a model for estimating 5‐year distant recurrence–free survival was constructed, and predictive performance was measured with the validation cohort. Results The prognostic cutoff value for the SN tumor burden was 1100 copies/μL. The following variables were significantly associated with distant recurrence and were used to construct the prediction model: SN tumor burden, age, pT classification, grade, progesterone receptor, adjuvant cytotoxic chemotherapy, and adjuvant anti–human epidermal growth factor receptor 2 therapy. The values for the area under the curve, sensitivity, specificity, and accuracy of the prediction model were 0.83, 63.4%, 81.7%, and 81.1%, respectively. Conclusions Using the OSNA assay, the molecular readout–based SN tumor burden is an independent prognostic factor for early breast cancer. This model accurately predicts early systemic recurrence and may facilitate decision‐making related to treatment. The molecular‐based tumor burden in sentinel lymph nodes is an independent prognostic factor for early breast cancer. This model can accurately predict early systemic recurrence, and the one‐step nucleic acid amplification assay may guide therapeutic decision‐making for patients.
doi_str_mv 10.1002/cncr.34144
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9311203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654300800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5144-b332d74c215600a8848faa63201d8a86d505ac9203414c3db9fe1c28c61f34483</originalsourceid><addsrcrecordid>eNp9ks-KFDEQxoMo7rh68QEk4EXEXvO3p8eDMAz-g0VBFLyFmnR6Jks6mU26lb75CD6Hj-WTWO2si3rwFIr8vq-Kr4qQ-5ydccbEUxttPpOKK3WDLDhbLSvGlbhJFoyxptJKfjohd0q5wHIptLxNTqQWopZ6uSDf1_SQXevt4FOkfWpdoF3K1EEOEy1TGVzvLc3Ojjm7aB31kW6zgzJQC1hnOhYfdxRQHJAKkGnrYRdTGVAIEcJUfKGpo8XFwUdsEKb-sKcRm5VndE1RsnM_vn4rFoJ7QvsxoBJZ9LZpn_JAyzC2011yq4NQ3L2r95R8fPniw-Z1df7u1ZvN-ryyGiOotlKKdqms4LpmDJpGNR1ALQXjbQNN3Wqmwa4EmxOzst2uOsetaGzNO6lUI0_J86PvYdz2rp0nyRDMIfse8mQSePP3T_R7s0ufzUpyjrZo8OjKIKfL0ZXB9L5YFwJEl8ZiMHqlueS1RvThP-hFGjNmNlO4OVwgY0g9PlI2p1Ky666H4czMJ2DmEzC_TgDhB3-Of43-3jkC_Ah88cFN_7Eym7eb90fTny_WwGI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2654300800</pqid></control><display><type>article</type><title>A prediction model for early systemic recurrence in breast cancer using a molecular diagnostic analysis of sentinel lymph nodes: A large‐scale, multicenter cohort study</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Osako, Tomo ; Matsuura, Masaaki ; Yotsumoto, Daisuke ; Takayama, Shin ; Kaneko, Koji ; Takahashi, Mina ; Shimazu, Kenzo ; Yoshidome, Katsuhide ; Kuraoka, Kazuya ; Itakura, Masayuki ; Tani, Mayumi ; Ishikawa, Takashi ; Ohi, Yasuyo ; Kinoshita, Takayuki ; Sato, Nobuaki ; Tsujimoto, Masahiko ; Nakamura, Seigo ; Tsuda, Hitoshi ; Noguchi, Shinzaburo ; Akiyama, Futoshi</creator><creatorcontrib>Osako, Tomo ; Matsuura, Masaaki ; Yotsumoto, Daisuke ; Takayama, Shin ; Kaneko, Koji ; Takahashi, Mina ; Shimazu, Kenzo ; Yoshidome, Katsuhide ; Kuraoka, Kazuya ; Itakura, Masayuki ; Tani, Mayumi ; Ishikawa, Takashi ; Ohi, Yasuyo ; Kinoshita, Takayuki ; Sato, Nobuaki ; Tsujimoto, Masahiko ; Nakamura, Seigo ; Tsuda, Hitoshi ; Noguchi, Shinzaburo ; Akiyama, Futoshi</creatorcontrib><description>Background The one‐step nucleic acid amplification (OSNA) assay can quantify the cytokeratin 19 messenger RNA copy number as a proxy for sentinel lymph node (SN) metastasis in breast cancer. A large‐scale, multicenter cohort study was performed to determine the prognostic value of the SN tumor burden based on a molecular readout and to establish a model for the prediction of early systemic recurrence in patients using the OSNA assay. Methods SN biopsies from 4757 patients with breast cancer were analyzed with the OSNA assay. The patients were randomly assigned to the training or validation cohort at a ratio of 2:1. On the basis of the training cohort, the threshold SN tumor burden value for stratifying distant recurrence was determined with Youden's index; predictors of distant recurrence were investigated via multivariable analyses. Based on the selected predictors, a model for estimating 5‐year distant recurrence–free survival was constructed, and predictive performance was measured with the validation cohort. Results The prognostic cutoff value for the SN tumor burden was 1100 copies/μL. The following variables were significantly associated with distant recurrence and were used to construct the prediction model: SN tumor burden, age, pT classification, grade, progesterone receptor, adjuvant cytotoxic chemotherapy, and adjuvant anti–human epidermal growth factor receptor 2 therapy. The values for the area under the curve, sensitivity, specificity, and accuracy of the prediction model were 0.83, 63.4%, 81.7%, and 81.1%, respectively. Conclusions Using the OSNA assay, the molecular readout–based SN tumor burden is an independent prognostic factor for early breast cancer. This model accurately predicts early systemic recurrence and may facilitate decision‐making related to treatment. The molecular‐based tumor burden in sentinel lymph nodes is an independent prognostic factor for early breast cancer. This model can accurately predict early systemic recurrence, and the one‐step nucleic acid amplification assay may guide therapeutic decision‐making for patients.</description><identifier>ISSN: 0008-543X</identifier><identifier>EISSN: 1097-0142</identifier><identifier>DOI: 10.1002/cncr.34144</identifier><identifier>PMID: 35226357</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Assaying ; Biomarkers, Tumor - metabolism ; Biopsy ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Cancer therapies ; Chemotherapy ; Cohort analysis ; Cohort Studies ; Copy number ; Cytokeratin ; cytokeratin 19 ; Cytotoxicity ; Decision making ; Epidermal growth factor ; Female ; Growth factors ; Humans ; Lymph nodes ; Lymph Nodes - pathology ; Lymphatic Metastasis - pathology ; Medical diagnosis ; Metastases ; mRNA ; multicenter study ; Neoplasm Recurrence, Local - pathology ; Nucleic acids ; Oncology ; one‐step nucleic acid amplification (OSNA) assay ; Original ; Pathology, Molecular ; Patients ; Performance prediction ; prediction model ; Prediction models ; Progesterone ; Quality ; Receptors ; sentinel lymph node ; Sentinel Lymph Node - pathology ; total tumor load ; Training ; Tumors</subject><ispartof>Cancer, 2022-05, Vol.128 (10), p.1913-1920</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of American Cancer Society</rights><rights>2022 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5144-b332d74c215600a8848faa63201d8a86d505ac9203414c3db9fe1c28c61f34483</citedby><cites>FETCH-LOGICAL-c5144-b332d74c215600a8848faa63201d8a86d505ac9203414c3db9fe1c28c61f34483</cites><orcidid>0000-0002-0837-2357 ; 0000-0001-9250-4035</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcncr.34144$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcncr.34144$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,1418,1434,27929,27930,45579,45580,46414,46838</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35226357$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osako, Tomo</creatorcontrib><creatorcontrib>Matsuura, Masaaki</creatorcontrib><creatorcontrib>Yotsumoto, Daisuke</creatorcontrib><creatorcontrib>Takayama, Shin</creatorcontrib><creatorcontrib>Kaneko, Koji</creatorcontrib><creatorcontrib>Takahashi, Mina</creatorcontrib><creatorcontrib>Shimazu, Kenzo</creatorcontrib><creatorcontrib>Yoshidome, Katsuhide</creatorcontrib><creatorcontrib>Kuraoka, Kazuya</creatorcontrib><creatorcontrib>Itakura, Masayuki</creatorcontrib><creatorcontrib>Tani, Mayumi</creatorcontrib><creatorcontrib>Ishikawa, Takashi</creatorcontrib><creatorcontrib>Ohi, Yasuyo</creatorcontrib><creatorcontrib>Kinoshita, Takayuki</creatorcontrib><creatorcontrib>Sato, Nobuaki</creatorcontrib><creatorcontrib>Tsujimoto, Masahiko</creatorcontrib><creatorcontrib>Nakamura, Seigo</creatorcontrib><creatorcontrib>Tsuda, Hitoshi</creatorcontrib><creatorcontrib>Noguchi, Shinzaburo</creatorcontrib><creatorcontrib>Akiyama, Futoshi</creatorcontrib><title>A prediction model for early systemic recurrence in breast cancer using a molecular diagnostic analysis of sentinel lymph nodes: A large‐scale, multicenter cohort study</title><title>Cancer</title><addtitle>Cancer</addtitle><description>Background The one‐step nucleic acid amplification (OSNA) assay can quantify the cytokeratin 19 messenger RNA copy number as a proxy for sentinel lymph node (SN) metastasis in breast cancer. A large‐scale, multicenter cohort study was performed to determine the prognostic value of the SN tumor burden based on a molecular readout and to establish a model for the prediction of early systemic recurrence in patients using the OSNA assay. Methods SN biopsies from 4757 patients with breast cancer were analyzed with the OSNA assay. The patients were randomly assigned to the training or validation cohort at a ratio of 2:1. On the basis of the training cohort, the threshold SN tumor burden value for stratifying distant recurrence was determined with Youden's index; predictors of distant recurrence were investigated via multivariable analyses. Based on the selected predictors, a model for estimating 5‐year distant recurrence–free survival was constructed, and predictive performance was measured with the validation cohort. Results The prognostic cutoff value for the SN tumor burden was 1100 copies/μL. The following variables were significantly associated with distant recurrence and were used to construct the prediction model: SN tumor burden, age, pT classification, grade, progesterone receptor, adjuvant cytotoxic chemotherapy, and adjuvant anti–human epidermal growth factor receptor 2 therapy. The values for the area under the curve, sensitivity, specificity, and accuracy of the prediction model were 0.83, 63.4%, 81.7%, and 81.1%, respectively. Conclusions Using the OSNA assay, the molecular readout–based SN tumor burden is an independent prognostic factor for early breast cancer. This model accurately predicts early systemic recurrence and may facilitate decision‐making related to treatment. The molecular‐based tumor burden in sentinel lymph nodes is an independent prognostic factor for early breast cancer. This model can accurately predict early systemic recurrence, and the one‐step nucleic acid amplification assay may guide therapeutic decision‐making for patients.</description><subject>Assaying</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Biopsy</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Cohort analysis</subject><subject>Cohort Studies</subject><subject>Copy number</subject><subject>Cytokeratin</subject><subject>cytokeratin 19</subject><subject>Cytotoxicity</subject><subject>Decision making</subject><subject>Epidermal growth factor</subject><subject>Female</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Lymph nodes</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphatic Metastasis - pathology</subject><subject>Medical diagnosis</subject><subject>Metastases</subject><subject>mRNA</subject><subject>multicenter study</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Nucleic acids</subject><subject>Oncology</subject><subject>one‐step nucleic acid amplification (OSNA) assay</subject><subject>Original</subject><subject>Pathology, Molecular</subject><subject>Patients</subject><subject>Performance prediction</subject><subject>prediction model</subject><subject>Prediction models</subject><subject>Progesterone</subject><subject>Quality</subject><subject>Receptors</subject><subject>sentinel lymph node</subject><subject>Sentinel Lymph Node - pathology</subject><subject>total tumor load</subject><subject>Training</subject><subject>Tumors</subject><issn>0008-543X</issn><issn>1097-0142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9ks-KFDEQxoMo7rh68QEk4EXEXvO3p8eDMAz-g0VBFLyFmnR6Jks6mU26lb75CD6Hj-WTWO2si3rwFIr8vq-Kr4qQ-5ydccbEUxttPpOKK3WDLDhbLSvGlbhJFoyxptJKfjohd0q5wHIptLxNTqQWopZ6uSDf1_SQXevt4FOkfWpdoF3K1EEOEy1TGVzvLc3Ojjm7aB31kW6zgzJQC1hnOhYfdxRQHJAKkGnrYRdTGVAIEcJUfKGpo8XFwUdsEKb-sKcRm5VndE1RsnM_vn4rFoJ7QvsxoBJZ9LZpn_JAyzC2011yq4NQ3L2r95R8fPniw-Z1df7u1ZvN-ryyGiOotlKKdqms4LpmDJpGNR1ALQXjbQNN3Wqmwa4EmxOzst2uOsetaGzNO6lUI0_J86PvYdz2rp0nyRDMIfse8mQSePP3T_R7s0ufzUpyjrZo8OjKIKfL0ZXB9L5YFwJEl8ZiMHqlueS1RvThP-hFGjNmNlO4OVwgY0g9PlI2p1Ky666H4czMJ2DmEzC_TgDhB3-Of43-3jkC_Ah88cFN_7Eym7eb90fTny_WwGI</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Osako, Tomo</creator><creator>Matsuura, Masaaki</creator><creator>Yotsumoto, Daisuke</creator><creator>Takayama, Shin</creator><creator>Kaneko, Koji</creator><creator>Takahashi, Mina</creator><creator>Shimazu, Kenzo</creator><creator>Yoshidome, Katsuhide</creator><creator>Kuraoka, Kazuya</creator><creator>Itakura, Masayuki</creator><creator>Tani, Mayumi</creator><creator>Ishikawa, Takashi</creator><creator>Ohi, Yasuyo</creator><creator>Kinoshita, Takayuki</creator><creator>Sato, Nobuaki</creator><creator>Tsujimoto, Masahiko</creator><creator>Nakamura, Seigo</creator><creator>Tsuda, Hitoshi</creator><creator>Noguchi, Shinzaburo</creator><creator>Akiyama, Futoshi</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0837-2357</orcidid><orcidid>https://orcid.org/0000-0001-9250-4035</orcidid></search><sort><creationdate>20220515</creationdate><title>A prediction model for early systemic recurrence in breast cancer using a molecular diagnostic analysis of sentinel lymph nodes: A large‐scale, multicenter cohort study</title><author>Osako, Tomo ; Matsuura, Masaaki ; Yotsumoto, Daisuke ; Takayama, Shin ; Kaneko, Koji ; Takahashi, Mina ; Shimazu, Kenzo ; Yoshidome, Katsuhide ; Kuraoka, Kazuya ; Itakura, Masayuki ; Tani, Mayumi ; Ishikawa, Takashi ; Ohi, Yasuyo ; Kinoshita, Takayuki ; Sato, Nobuaki ; Tsujimoto, Masahiko ; Nakamura, Seigo ; Tsuda, Hitoshi ; Noguchi, Shinzaburo ; Akiyama, Futoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5144-b332d74c215600a8848faa63201d8a86d505ac9203414c3db9fe1c28c61f34483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assaying</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Biopsy</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Cohort analysis</topic><topic>Cohort Studies</topic><topic>Copy number</topic><topic>Cytokeratin</topic><topic>cytokeratin 19</topic><topic>Cytotoxicity</topic><topic>Decision making</topic><topic>Epidermal growth factor</topic><topic>Female</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Lymph nodes</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphatic Metastasis - pathology</topic><topic>Medical diagnosis</topic><topic>Metastases</topic><topic>mRNA</topic><topic>multicenter study</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Nucleic acids</topic><topic>Oncology</topic><topic>one‐step nucleic acid amplification (OSNA) assay</topic><topic>Original</topic><topic>Pathology, Molecular</topic><topic>Patients</topic><topic>Performance prediction</topic><topic>prediction model</topic><topic>Prediction models</topic><topic>Progesterone</topic><topic>Quality</topic><topic>Receptors</topic><topic>sentinel lymph node</topic><topic>Sentinel Lymph Node - pathology</topic><topic>total tumor load</topic><topic>Training</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osako, Tomo</creatorcontrib><creatorcontrib>Matsuura, Masaaki</creatorcontrib><creatorcontrib>Yotsumoto, Daisuke</creatorcontrib><creatorcontrib>Takayama, Shin</creatorcontrib><creatorcontrib>Kaneko, Koji</creatorcontrib><creatorcontrib>Takahashi, Mina</creatorcontrib><creatorcontrib>Shimazu, Kenzo</creatorcontrib><creatorcontrib>Yoshidome, Katsuhide</creatorcontrib><creatorcontrib>Kuraoka, Kazuya</creatorcontrib><creatorcontrib>Itakura, Masayuki</creatorcontrib><creatorcontrib>Tani, Mayumi</creatorcontrib><creatorcontrib>Ishikawa, Takashi</creatorcontrib><creatorcontrib>Ohi, Yasuyo</creatorcontrib><creatorcontrib>Kinoshita, Takayuki</creatorcontrib><creatorcontrib>Sato, Nobuaki</creatorcontrib><creatorcontrib>Tsujimoto, Masahiko</creatorcontrib><creatorcontrib>Nakamura, Seigo</creatorcontrib><creatorcontrib>Tsuda, Hitoshi</creatorcontrib><creatorcontrib>Noguchi, Shinzaburo</creatorcontrib><creatorcontrib>Akiyama, Futoshi</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osako, Tomo</au><au>Matsuura, Masaaki</au><au>Yotsumoto, Daisuke</au><au>Takayama, Shin</au><au>Kaneko, Koji</au><au>Takahashi, Mina</au><au>Shimazu, Kenzo</au><au>Yoshidome, Katsuhide</au><au>Kuraoka, Kazuya</au><au>Itakura, Masayuki</au><au>Tani, Mayumi</au><au>Ishikawa, Takashi</au><au>Ohi, Yasuyo</au><au>Kinoshita, Takayuki</au><au>Sato, Nobuaki</au><au>Tsujimoto, Masahiko</au><au>Nakamura, Seigo</au><au>Tsuda, Hitoshi</au><au>Noguchi, Shinzaburo</au><au>Akiyama, Futoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A prediction model for early systemic recurrence in breast cancer using a molecular diagnostic analysis of sentinel lymph nodes: A large‐scale, multicenter cohort study</atitle><jtitle>Cancer</jtitle><addtitle>Cancer</addtitle><date>2022-05-15</date><risdate>2022</risdate><volume>128</volume><issue>10</issue><spage>1913</spage><epage>1920</epage><pages>1913-1920</pages><issn>0008-543X</issn><eissn>1097-0142</eissn><abstract>Background The one‐step nucleic acid amplification (OSNA) assay can quantify the cytokeratin 19 messenger RNA copy number as a proxy for sentinel lymph node (SN) metastasis in breast cancer. A large‐scale, multicenter cohort study was performed to determine the prognostic value of the SN tumor burden based on a molecular readout and to establish a model for the prediction of early systemic recurrence in patients using the OSNA assay. Methods SN biopsies from 4757 patients with breast cancer were analyzed with the OSNA assay. The patients were randomly assigned to the training or validation cohort at a ratio of 2:1. On the basis of the training cohort, the threshold SN tumor burden value for stratifying distant recurrence was determined with Youden's index; predictors of distant recurrence were investigated via multivariable analyses. Based on the selected predictors, a model for estimating 5‐year distant recurrence–free survival was constructed, and predictive performance was measured with the validation cohort. Results The prognostic cutoff value for the SN tumor burden was 1100 copies/μL. The following variables were significantly associated with distant recurrence and were used to construct the prediction model: SN tumor burden, age, pT classification, grade, progesterone receptor, adjuvant cytotoxic chemotherapy, and adjuvant anti–human epidermal growth factor receptor 2 therapy. The values for the area under the curve, sensitivity, specificity, and accuracy of the prediction model were 0.83, 63.4%, 81.7%, and 81.1%, respectively. Conclusions Using the OSNA assay, the molecular readout–based SN tumor burden is an independent prognostic factor for early breast cancer. This model accurately predicts early systemic recurrence and may facilitate decision‐making related to treatment. The molecular‐based tumor burden in sentinel lymph nodes is an independent prognostic factor for early breast cancer. This model can accurately predict early systemic recurrence, and the one‐step nucleic acid amplification assay may guide therapeutic decision‐making for patients.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35226357</pmid><doi>10.1002/cncr.34144</doi><tpages>0</tpages><orcidid>https://orcid.org/0000-0002-0837-2357</orcidid><orcidid>https://orcid.org/0000-0001-9250-4035</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-543X
ispartof Cancer, 2022-05, Vol.128 (10), p.1913-1920
issn 0008-543X
1097-0142
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9311203
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Assaying
Biomarkers, Tumor - metabolism
Biopsy
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Cancer therapies
Chemotherapy
Cohort analysis
Cohort Studies
Copy number
Cytokeratin
cytokeratin 19
Cytotoxicity
Decision making
Epidermal growth factor
Female
Growth factors
Humans
Lymph nodes
Lymph Nodes - pathology
Lymphatic Metastasis - pathology
Medical diagnosis
Metastases
mRNA
multicenter study
Neoplasm Recurrence, Local - pathology
Nucleic acids
Oncology
one‐step nucleic acid amplification (OSNA) assay
Original
Pathology, Molecular
Patients
Performance prediction
prediction model
Prediction models
Progesterone
Quality
Receptors
sentinel lymph node
Sentinel Lymph Node - pathology
total tumor load
Training
Tumors
title A prediction model for early systemic recurrence in breast cancer using a molecular diagnostic analysis of sentinel lymph nodes: A large‐scale, multicenter cohort study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A45%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20prediction%20model%20for%20early%20systemic%20recurrence%20in%20breast%20cancer%20using%20a%20molecular%20diagnostic%20analysis%20of%20sentinel%20lymph%20nodes:%20A%20large%E2%80%90scale,%20multicenter%20cohort%20study&rft.jtitle=Cancer&rft.au=Osako,%20Tomo&rft.date=2022-05-15&rft.volume=128&rft.issue=10&rft.spage=1913&rft.epage=1920&rft.pages=1913-1920&rft.issn=0008-543X&rft.eissn=1097-0142&rft_id=info:doi/10.1002/cncr.34144&rft_dat=%3Cproquest_pubme%3E2654300800%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2654300800&rft_id=info:pmid/35226357&rfr_iscdi=true